A Computational Technique for Solving Singularly Perturbed Delay Partial Differential Equations

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Burcu Gürbüz
{"title":"A Computational Technique for Solving Singularly Perturbed Delay Partial Differential Equations","authors":"Burcu Gürbüz","doi":"10.2478/fcds-2021-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a matrix method based on Laguerre series to solve singularly perturbed second order delay parabolic convection-diffusion and reaction-diffusion type problems involving boundary and initial conditions is introduced. The approximate solution of the problem is obtained by truncated Laguerre series. Moreover convergence analysis is introduced and stability is explained. Besides, a test case is given and the error analysis is considered by the different norms in order to show the applicability of the method.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"46 1","pages":"221 - 233"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this work, a matrix method based on Laguerre series to solve singularly perturbed second order delay parabolic convection-diffusion and reaction-diffusion type problems involving boundary and initial conditions is introduced. The approximate solution of the problem is obtained by truncated Laguerre series. Moreover convergence analysis is introduced and stability is explained. Besides, a test case is given and the error analysis is considered by the different norms in order to show the applicability of the method.
求解奇摄动时滞偏微分方程的一种计算方法
摘要本文介绍了一种基于Laguerre级数的矩阵方法,用于求解奇摄动的二阶时滞抛物型对流扩散和反应扩散型问题,该问题涉及边界条件和初始条件。该问题的近似解是由截断的拉盖尔级数得到的。此外,还介绍了收敛性分析和稳定性解释。此外,给出了一个测试案例,并考虑了不同规范的误差分析,以表明该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信