The construction of the Hilbert genus fields of real cyclic quartic fields

IF 0.5 Q3 MATHEMATICS
M. M. Chems-Eddin, Moulay Ahmed Hajjami, M. Taous
{"title":"The construction of the Hilbert genus fields of real cyclic quartic fields","authors":"M. M. Chems-Eddin, Moulay Ahmed Hajjami, M. Taous","doi":"10.7169/facm/2014","DOIUrl":null,"url":null,"abstract":"Let k be a number field and let H(k) denote the Hilbert class field of k, that is the maximal abelian unramified extension of k. It is known by class field theory that the Galois group of the extension H(k)/k, i.e., G := Gal(H(k)/k), is isomorphic to Cl(k), the class group of k (cf. [13, p. 228]). The Hilbert genus field of k, denoted by E(k), is the invariant field of G. Thus, by Galois theory, we have: Cl(k)/Cl(k) ≃ G/G ≃ Gal(E(k)/k),","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a number field and let H(k) denote the Hilbert class field of k, that is the maximal abelian unramified extension of k. It is known by class field theory that the Galois group of the extension H(k)/k, i.e., G := Gal(H(k)/k), is isomorphic to Cl(k), the class group of k (cf. [13, p. 228]). The Hilbert genus field of k, denoted by E(k), is the invariant field of G. Thus, by Galois theory, we have: Cl(k)/Cl(k) ≃ G/G ≃ Gal(E(k)/k),
实数循环四次域的Hilbert属域的构造
设k为数域,H(k)表示k的Hilbert类域,即k的最大阿贝尔无分支扩展。由类场论可知,扩展H(k)/k的伽罗瓦群,即G:= Gal(H(k)/k),与k的类群Cl(k)同构(cf. [13, p. 228])。k的Hilbert格场,用E(k)表示,是G的不变场。因此,根据伽罗瓦理论,我们得到:Cl(k)/Cl(k)≃G/G≃Gal(E(k)/k);
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信