On distance-regular graphs with c2 = 2

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Makhnev, M. S. Nirova
{"title":"On distance-regular graphs with c2 = 2","authors":"A. Makhnev, M. S. Nirova","doi":"10.1515/dma-2021-0035","DOIUrl":null,"url":null,"abstract":"Abstract Let Γ be a distance-regular graph of diameter 3 with c2 = 2 (any two vertices with distance 2 between them have exactly two common neighbors). Then the neighborhood Δ of the vertex w in Γ is a partial line space. In view of the Brouwer–Neumaier result either Δ is the union of isolated (λ + 1)-cliques or the degrees of vertices k ≥ λ(λ + 3)/2, and in the case of equality k = 5, λ = 2 and Γ is the icosahedron graph. A. A. Makhnev, M. P. Golubyatnikov and Wenbin Guo have investigated distance-regular graphs Γ of diameter 3 such that Γ3 is the pseudo-geometrical network graph. They have found a new infinite set {2u2 −2m2 + 4m − 3,2u2 −2m2,u2 − m2 + 4m −2;1, 2, u2 − m2} of feasible intersection arrays for such graphs with c2 = 2. Here we prove that some distance-regular graphs from this set do not exist. It is proved also that distance-regular graph with intersection array {22, 16, 5; 1, 2, 20} does not exist.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"31 1","pages":"397 - 401"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2021-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let Γ be a distance-regular graph of diameter 3 with c2 = 2 (any two vertices with distance 2 between them have exactly two common neighbors). Then the neighborhood Δ of the vertex w in Γ is a partial line space. In view of the Brouwer–Neumaier result either Δ is the union of isolated (λ + 1)-cliques or the degrees of vertices k ≥ λ(λ + 3)/2, and in the case of equality k = 5, λ = 2 and Γ is the icosahedron graph. A. A. Makhnev, M. P. Golubyatnikov and Wenbin Guo have investigated distance-regular graphs Γ of diameter 3 such that Γ3 is the pseudo-geometrical network graph. They have found a new infinite set {2u2 −2m2 + 4m − 3,2u2 −2m2,u2 − m2 + 4m −2;1, 2, u2 − m2} of feasible intersection arrays for such graphs with c2 = 2. Here we prove that some distance-regular graphs from this set do not exist. It is proved also that distance-regular graph with intersection array {22, 16, 5; 1, 2, 20} does not exist.
在c2 = 2的距离正则图上
摘要设Γ是直径为3的距离正则图,c2=2(任意两个相距2的顶点恰好有两个公共邻居)。Γ中顶点w的邻域Δ是一个局部线空间。鉴于Brouwer–Neumaier结果,Δ是孤立(λ+1)-群的并集或顶点的度k≥λ(λ+3)/2,并且在等式k=5的情况下,λ=2和Γ是二十面体图。A.A.Makhnev、M.P.Golubyatnikov和郭文斌研究了直径为3的距离正则图Γ,使得Γ3是伪几何网络图。他们发现了一个新的无限集{2u2−2m2+4m−3,2u2–2m2,u2−m2+4m−2;1,2,u2–m2},用于c2=2的此类图的可行交数组。这里我们证明了这个集合的一些距离正则图是不存在的。还证明了具有交数组{22,16,5;1,2,20}的距离正则图不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信