{"title":"Measurement of stresses and strains around a pushed in model pile or cone penetrometer","authors":"M. Talesnick, Itamar Omer","doi":"10.1680/jphmg.22.00056","DOIUrl":null,"url":null,"abstract":"The paper describes the methods and outcomes of tests designed to simulate the penetration of a pushed in model pile, or a field testing penetration element. The penetration element was a 25 mm diameter cylinder with a conical tip. The element was advanced into a sand profile subjected to vertical pressure under at-rest conditions. The unique aspect of the testing was the inclusion of in-soil measurement tools. Null soil pressure gages were used to monitor radial pressures and in-soil linear strain devices were used to monitor radial strain at points within a measurement horizon as the penetration element was advanced into the profile. Testing revealed that radial pressures return to their ambient pre-penetration magnitudes once the element passes below a sensing horizon. In-soil radial strain measurements illustrated that the rapid drop in radial soil pressure coincides with a small, but consistent reversal in the increment of radial strain. As distance from the axis of penetration decreases this reversal is more significant. These observations have importance in considering the development of frictional resistance and axial capacity of pushed in piles and at the same time has relevance to the analysis of cone penetration testing in the determination of rational material properties.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jphmg.22.00056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper describes the methods and outcomes of tests designed to simulate the penetration of a pushed in model pile, or a field testing penetration element. The penetration element was a 25 mm diameter cylinder with a conical tip. The element was advanced into a sand profile subjected to vertical pressure under at-rest conditions. The unique aspect of the testing was the inclusion of in-soil measurement tools. Null soil pressure gages were used to monitor radial pressures and in-soil linear strain devices were used to monitor radial strain at points within a measurement horizon as the penetration element was advanced into the profile. Testing revealed that radial pressures return to their ambient pre-penetration magnitudes once the element passes below a sensing horizon. In-soil radial strain measurements illustrated that the rapid drop in radial soil pressure coincides with a small, but consistent reversal in the increment of radial strain. As distance from the axis of penetration decreases this reversal is more significant. These observations have importance in considering the development of frictional resistance and axial capacity of pushed in piles and at the same time has relevance to the analysis of cone penetration testing in the determination of rational material properties.
期刊介绍:
International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.