OPEN PACKING NUMBER FOR SOME CLASSES OF PERFECT GRAPHS

Q3 Mathematics
K. R. Chandrasekar, S. Saravanakumar
{"title":"OPEN PACKING NUMBER FOR SOME CLASSES OF PERFECT GRAPHS","authors":"K. R. Chandrasekar, S. Saravanakumar","doi":"10.15826/umj.2020.2.004","DOIUrl":null,"url":null,"abstract":"Let \\(G\\) be a graph with the vertex set \\(V(G)\\).  A subset \\(S\\) of \\(V(G)\\) is an open packing set of \\(G\\) if every pair of vertices in \\(S\\) has no common neighbor in \\(G.\\)  The maximum cardinality of an open packing set of \\(G\\) is the open packing number of \\(G\\) and it is denoted by \\(\\rho^o(G)\\).  In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, \\(\\{P_4, C_4\\}\\)-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2020.2.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G\) be a graph with the vertex set \(V(G)\).  A subset \(S\) of \(V(G)\) is an open packing set of \(G\) if every pair of vertices in \(S\) has no common neighbor in \(G.\)  The maximum cardinality of an open packing set of \(G\) is the open packing number of \(G\) and it is denoted by \(\rho^o(G)\).  In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, \(\{P_4, C_4\}\)-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.
一类完全图的开包装数
设\(G\)是一个顶点集为\(V(G)\)的图。如果\(S)中的每对顶点在\(G)中没有公共邻居,则\(V(G)\)的子集\(S \)是\(G \)的开包装集。本文给出了几类完全图的开包装数的精确值,如分裂图、无(P_4,C_4)图、二分图的补图、完全图的有标题图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信