{"title":"Multiple-input multiple-output radar, ground-based MIMO SAR for ground deformation monitoring","authors":"F. Mugnai, D. Tarchi","doi":"10.1080/22797254.2022.2141660","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study focuses on investigating the capabilities of a Multiple-input multiple-output RADAR. A Radar interferometer, based on an electronically scanned array in MIMO configuration (MIMO‐SAR), has been assessed for operational use in monitoring phenomena of geological interest, such as landslides unstable slopes. The system applies the very well‐known and proven Ground-Based Interferometric technique. It guarantees a very short refreshing time compared to traditional systems based on the mechanical movement of the radar transceiver on a rail or the mechanical steering of a real antenna. The system can monitor several phenomena having deformation rates too high to be correctly retrieved by traditional systems currently in use. Implementing a prototype termed MELISSA allowed the testing technique’s performances in two real case studies: a landslide and an unstable volcanic flank. The experimental results were compared with LISA, a well-known Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) interferometer. MELISSA allows for obtaining an excellent accuracy, better than 0.01 mm. The range and angular resolution are on the same order of magnitude as those obtained through LISA. However, the refreshing rate obtained from MELISSA, 0.01 s, guarantees a strong coherence even in challenging environmental scenarios as a flank of an active volcano.","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"55 1","pages":"604 - 621"},"PeriodicalIF":3.7000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2022.2141660","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT This study focuses on investigating the capabilities of a Multiple-input multiple-output RADAR. A Radar interferometer, based on an electronically scanned array in MIMO configuration (MIMO‐SAR), has been assessed for operational use in monitoring phenomena of geological interest, such as landslides unstable slopes. The system applies the very well‐known and proven Ground-Based Interferometric technique. It guarantees a very short refreshing time compared to traditional systems based on the mechanical movement of the radar transceiver on a rail or the mechanical steering of a real antenna. The system can monitor several phenomena having deformation rates too high to be correctly retrieved by traditional systems currently in use. Implementing a prototype termed MELISSA allowed the testing technique’s performances in two real case studies: a landslide and an unstable volcanic flank. The experimental results were compared with LISA, a well-known Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) interferometer. MELISSA allows for obtaining an excellent accuracy, better than 0.01 mm. The range and angular resolution are on the same order of magnitude as those obtained through LISA. However, the refreshing rate obtained from MELISSA, 0.01 s, guarantees a strong coherence even in challenging environmental scenarios as a flank of an active volcano.
期刊介绍:
European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include:
-land use/land cover
-geology, earth and geoscience
-agriculture and forestry
-geography and landscape
-ecology and environmental science
-support to land management
-hydrology and water resources
-atmosphere and meteorology
-oceanography
-new sensor systems, missions and software/algorithms
-pre processing/calibration
-classifications
-time series/change analysis
-data integration/merging/fusion
-image processing and analysis
-modelling
European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.