Marchenko-Pastur law for a random tensor model

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
P. Yaskov
{"title":"Marchenko-Pastur law for a random tensor model","authors":"P. Yaskov","doi":"10.1214/23-ecp527","DOIUrl":null,"url":null,"abstract":"We study the limiting spectral distribution of large-dimensional sample covariance matrices associated with symmetric random tensors formed by $\\binom{n}{d}$ different products of $d$ variables chosen from $n$ independent standardized random variables. We find optimal sufficient conditions for this distribution to be the Marchenko-Pastur law in the case $d=d(n)$ and $n\\to\\infty$. Our conditions reduce to $d^2=o(n)$ when the variables have uniformly bounded fourth moments. The proofs are based on a new concentration inequality for quadratic forms in symmetric random tensors and a law of large numbers for elementary symmetric random polynomials.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We study the limiting spectral distribution of large-dimensional sample covariance matrices associated with symmetric random tensors formed by $\binom{n}{d}$ different products of $d$ variables chosen from $n$ independent standardized random variables. We find optimal sufficient conditions for this distribution to be the Marchenko-Pastur law in the case $d=d(n)$ and $n\to\infty$. Our conditions reduce to $d^2=o(n)$ when the variables have uniformly bounded fourth moments. The proofs are based on a new concentration inequality for quadratic forms in symmetric random tensors and a law of large numbers for elementary symmetric random polynomials.
随机张量模型的Marchenko-Pastur定律
我们研究了与对称随机张量相关的大维样本协方差矩阵的极限谱分布,该张量由$\binom{n}{d}$从$n$独立的标准化随机变量中选择的$d$变量的不同乘积形成。在$d=d(n)$和$n\to\infty$的情况下,我们发现这种分布的最优充分条件是Marchenko-Pastur定律。当变量具有一致有界的四阶矩时,我们的条件减少到$d^2=o(n)$。证明是基于对称随机张量中二次型的一个新的集中不等式和初等对称随机多项式的一个大数定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信