Intrinsic disorder and flexibility in proteins: a challenge for structural biology and drug design

IF 2 2区 化学 Q2 CRYSTALLOGRAPHY
G. Zanotti
{"title":"Intrinsic disorder and flexibility in proteins: a challenge for structural biology and drug design","authors":"G. Zanotti","doi":"10.1080/0889311X.2023.2208518","DOIUrl":null,"url":null,"abstract":"The structure–function paradigm, i.e. the concept that it is the three-dimensional structure of a protein that determines its function, has been partially modified by the discovery that a significant portion of the eukaryotic proteome is disordered and that this disorder is often functional. The presence of disorder is the origin of several issues, but the most relevant, at least from the biomedical point of view, is the difficulty of designing drugs in absence of a well-defined conformation of the target. To make the problem worse, we have to consider that often the disorder concerns proteins involved in diseases very relevant for human health, as cancer or neurodegenerative disorders. This review tries to summarize the state of the art of our knowledge on the subject and to describe the tools used to detect disorder and how drug design techniques used for well-folded proteins have been adjusted to this more challenging situation. Abbreviations: AD: Alzheimer’s disease; CAID: Critical assessment of intrinsic protein disorder; CASP: Critical assessment of protein structure prediction; CD: circular dichroism; Cryo-EM: cryo-electron microscopy; DIBS: differential binding score; FRET: Förster resonance energy transfer; HD: Huntington’s disease; IDR: Intrinsically disordered regions; IDP: intrinsically disordered proteins; LDR: long intrinsically disordered regions; MG: Molten globule; MoRF: Molecular recognition feature; NMR: Nuclear magnetic resonance; PDB: Protein Data Bank; PD: Parkinson’s disease; POMS: polyoxometalates; SAXS: Small-angle X-ray scattering; SLiMS: short linear motifs; TFs: Transcription factors.","PeriodicalId":54385,"journal":{"name":"Crystallography Reviews","volume":"29 1","pages":"48 - 75"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystallography Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0889311X.2023.2208518","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The structure–function paradigm, i.e. the concept that it is the three-dimensional structure of a protein that determines its function, has been partially modified by the discovery that a significant portion of the eukaryotic proteome is disordered and that this disorder is often functional. The presence of disorder is the origin of several issues, but the most relevant, at least from the biomedical point of view, is the difficulty of designing drugs in absence of a well-defined conformation of the target. To make the problem worse, we have to consider that often the disorder concerns proteins involved in diseases very relevant for human health, as cancer or neurodegenerative disorders. This review tries to summarize the state of the art of our knowledge on the subject and to describe the tools used to detect disorder and how drug design techniques used for well-folded proteins have been adjusted to this more challenging situation. Abbreviations: AD: Alzheimer’s disease; CAID: Critical assessment of intrinsic protein disorder; CASP: Critical assessment of protein structure prediction; CD: circular dichroism; Cryo-EM: cryo-electron microscopy; DIBS: differential binding score; FRET: Förster resonance energy transfer; HD: Huntington’s disease; IDR: Intrinsically disordered regions; IDP: intrinsically disordered proteins; LDR: long intrinsically disordered regions; MG: Molten globule; MoRF: Molecular recognition feature; NMR: Nuclear magnetic resonance; PDB: Protein Data Bank; PD: Parkinson’s disease; POMS: polyoxometalates; SAXS: Small-angle X-ray scattering; SLiMS: short linear motifs; TFs: Transcription factors.
蛋白质的内在紊乱和灵活性:对结构生物学和药物设计的挑战
结构-功能范式,即蛋白质的三维结构决定其功能的概念,由于发现真核蛋白质组的很大一部分是紊乱的,并且这种紊乱通常是功能性的,已经被部分修改。紊乱的存在是几个问题的根源,但最相关的,至少从生物医学的角度来看,是在缺乏明确的靶标构象的情况下设计药物的困难。让问题变得更糟的是,我们必须考虑到,这种疾病通常涉及与人类健康非常相关的疾病中的蛋白质,如癌症或神经退行性疾病。这篇综述试图总结我们在这一主题上的最新知识,并描述用于检测疾病的工具,以及用于折叠良好蛋白质的药物设计技术是如何适应这种更具挑战性的情况的。缩写:AD:阿尔茨海默病;CAID:内在蛋白质障碍的关键评估;CASP:蛋白质结构预测的关键评估;CD:圆二色性;冷冻电镜:冷冻电子显微镜;DIBS:差异结合得分;FRET:Förster共振能量转移;HD:亨廷顿舞蹈症;IDR:本质无序区域;IDP:本质上无序的蛋白质;LDR:长的本质无序区域;MG:熔球;MoRF:分子识别特征;核磁共振:核磁共振;PDB:蛋白质数据库;帕金森病;POMS:多金属氧酸盐;SAXS:小角度X射线散射;SLiMS:短线性基序;转录因子:转录因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystallography Reviews
Crystallography Reviews CRYSTALLOGRAPHY-
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Crystallography Reviews publishes English language reviews on topics in crystallography and crystal growth, covering all theoretical and applied aspects of biological, chemical, industrial, mineralogical and physical crystallography. The intended readership is the crystallographic community at large, as well as scientists working in related fields of interest. It is hoped that the articles will be accessible to all these, and not just specialists in each topic. Full reviews are typically 20 to 80 journal pages long with hundreds of references and the journal also welcomes shorter topical, book, historical, evaluation, biographical, data and key issues reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信