The maximum number of systoles for genus two Riemann surfaces with abelian differentials

IF 1.1 3区 数学 Q1 MATHEMATICS
C. Judge, H. Parlier
{"title":"The maximum number of systoles for genus two Riemann surfaces with abelian differentials","authors":"C. Judge, H. Parlier","doi":"10.4171/CMH/463","DOIUrl":null,"url":null,"abstract":"In this article, we provide bounds on systoles associated to a holomorphic $1$-form $\\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X,\\omega)$ and, moreover, that this bound is realized by a unique translation surface up to homothety. For general genus $g$ and a holomorphic 1-form $\\omega$ with one zero, we provide the optimal upper bound, $6g-3$, on the number of homotopy classes of systoles. If, in addition, $X$ is hyperelliptic, then we prove that the optimal upper bound is $6g-5$.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/463","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/463","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this article, we provide bounds on systoles associated to a holomorphic $1$-form $\omega$ on a Riemann surface $X$. In particular, we show that if $X$ has genus two, then, up to homotopy, there are at most $10$ systolic loops on $(X,\omega)$ and, moreover, that this bound is realized by a unique translation surface up to homothety. For general genus $g$ and a holomorphic 1-form $\omega$ with one zero, we provide the optimal upper bound, $6g-3$, on the number of homotopy classes of systoles. If, in addition, $X$ is hyperelliptic, then we prove that the optimal upper bound is $6g-5$.
具有阿贝尔微分的两个黎曼曲面的最大系统数
在这篇文章中,我们提供了与黎曼曲面$X$上的全纯$1$形式$\omega$相关的收缩的界。特别地,我们证明了如果$X$有亏格2,那么,直到同伦论,在$(X,\omega)$上最多有$10$收缩环,而且,这个界是通过直到同伦主义的唯一平移曲面实现的。对于一般亏格$g$和具有一个零的全纯1-形式$\omega$,我们给出了系统的同胚类的个数的最优上界$6g-3$。此外,如果$X$是超椭圆的,那么我们证明了最优上界是$6g-5$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信