Spatiotemporal prediction of landslide displacement using deep learning approaches based on monitored time-series displacement data: a case in the Huanglianshu landslide
N. Xi, M. Zang, Ruoshen Lin, Yingjie Sun, Gang Mei
{"title":"Spatiotemporal prediction of landslide displacement using deep learning approaches based on monitored time-series displacement data: a case in the Huanglianshu landslide","authors":"N. Xi, M. Zang, Ruoshen Lin, Yingjie Sun, Gang Mei","doi":"10.1080/17499518.2023.2172186","DOIUrl":null,"url":null,"abstract":"ABSTRACT The use of deep learning approaches to predict landslide displacement based on monitored time-series data is an effective method for the early-warning of landslides. Currently, most prediction models focus on the temporal correlation of displacements from a single monitoring point, ignoring the spatial influence of other monitoring points. To fully consider the spatiotemporal features of the displacement data, this paper develops three deep learning models based on graph convolution networks to spatiotemporally predict the landslide displacements of the Huanglianshu landslide. Specifically, we first establish a fully connected graph to represent the spatial relationships of all the deployed monitoring points. Second, we develop a temporal graph convolutional network-long short term memory (TGCN-LSTM) model and an Attention-TGCN model based on the temporal graph convolutional network-gate recurrent unit (TGCN-GRU) deep learning model and employ the three models to spatiotemporally predict displacements of the Huanglianshu landslide. The proposed spatiotemporal prediction models accurately predict the displacements at seven monitoring points, with a maximum R 2 of 0.85 at the individual monitoring points. The comparative results show that the proposed Attention-TGCN model achieves the highest spatiotemporal prediction accuracy, and the accuracy of the Attention-TGCN model can further improve after considering the movement of the monitoring points.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"98 - 113"},"PeriodicalIF":6.5000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2023.2172186","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT The use of deep learning approaches to predict landslide displacement based on monitored time-series data is an effective method for the early-warning of landslides. Currently, most prediction models focus on the temporal correlation of displacements from a single monitoring point, ignoring the spatial influence of other monitoring points. To fully consider the spatiotemporal features of the displacement data, this paper develops three deep learning models based on graph convolution networks to spatiotemporally predict the landslide displacements of the Huanglianshu landslide. Specifically, we first establish a fully connected graph to represent the spatial relationships of all the deployed monitoring points. Second, we develop a temporal graph convolutional network-long short term memory (TGCN-LSTM) model and an Attention-TGCN model based on the temporal graph convolutional network-gate recurrent unit (TGCN-GRU) deep learning model and employ the three models to spatiotemporally predict displacements of the Huanglianshu landslide. The proposed spatiotemporal prediction models accurately predict the displacements at seven monitoring points, with a maximum R 2 of 0.85 at the individual monitoring points. The comparative results show that the proposed Attention-TGCN model achieves the highest spatiotemporal prediction accuracy, and the accuracy of the Attention-TGCN model can further improve after considering the movement of the monitoring points.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.