Solutions of the Nonlinear Evolution Problems and their Applications

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Muhammad Amir, J. A. Haider, Jamshaid Ul Rahman, Asifa Ashraf
{"title":"Solutions of the Nonlinear Evolution Problems and their Applications","authors":"Muhammad Amir, J. A. Haider, Jamshaid Ul Rahman, Asifa Ashraf","doi":"10.2478/ama-2023-0040","DOIUrl":null,"url":null,"abstract":"Abstract In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases, Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases, Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators.
非线性演化问题的解及其应用
摘要本文采用拉普拉斯变换变分迭代法求解单摆和质量弹簧振子的非线性演化问题,即duffing方程。在变分迭代法(VIM)中,寻找拉格朗日乘子是一个重要步骤,而变分理论通常用于此目的。本文说明了如何用拉普拉斯变换以一种更简单的方法求出乘数。这种方法为处理各种非线性问题的科学家和工程师提供了一种简便的方法。求解Duffing方程的方法不同,但本文首次采用基于拉普拉斯的VIM来求解Duffing方程和非线性振子。在大多数情况下,拉普拉斯变分迭代法(LVIM)只需要一次迭代就可以获得线性化和离散化的高精度答案,或者需要大量的计算量。与VIM方法相比,该方法的收敛准则是有效的。将拉普拉斯变换的解析VIM与MATLAB内置的Simulink命令进行比较,证实了该方法对求解非线性演化问题的适用性。将来,我们将能够找到高度非线性振子的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信