Muhammad Amir, J. A. Haider, Jamshaid Ul Rahman, Asifa Ashraf
{"title":"Solutions of the Nonlinear Evolution Problems and their Applications","authors":"Muhammad Amir, J. A. Haider, Jamshaid Ul Rahman, Asifa Ashraf","doi":"10.2478/ama-2023-0040","DOIUrl":null,"url":null,"abstract":"Abstract In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases, Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, a well-known technique, the variational iterative method with the Laplace transform, is used to solve nonlinear evolution problems of a simple pendulum and mass spring oscillator, which represents the duffing equation. In the variational iteration method (VIM), finding the Lagrange multiplier is an important step, and the variational theory is often used for this purpose. This paper shows how the Laplace transform can be used to find the multiplier in a simpler way. This method gives an easy approach for scientists and engineers who deal with a wide range of nonlinear problems. Duffing equation is solved by different analytic methods, but we tackle this for the first time to solve the duffing equation and the nonlinear oscillator by using the Laplace-based VIM. In the majority of cases, Laplace variational iteration method (LVIM) just needs one iteration to attain high accuracy of the answer for linearization anddiscretization, or intensive computational work is needed. The convergence criteria of this method are efficient as compared with the VIM. Comparing the analytical VIM by Laplace transform with MATLAB’s built-in command Simulink that confirms the method’s suitability for solving nonlinear evolution problems will be helpful. In future, we will be able to find the solution of highly nonlinear oscillators.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.