{"title":"Predicting the performance of retaining structure under seismic loads by PLAXIS software","authors":"M. M. Badr, Qassun S. Mohammed Shafiqu","doi":"10.1515/jmbm-2022-0251","DOIUrl":null,"url":null,"abstract":"Abstract The dynamic response of the retaining structures is a complex issue, and a major challenge in their design, especially under seismic loading conditions. So a reliable and efficient solution following a computational approach, closer to reality, is required to obtain satisfactory results. Hence, this study came to clarify the effectiveness of the PLAXIS 3D program in predicting the performance, accuracy, and reliability of retaining walls. A case study of placing compressed materials as the backfill of the retaining wall soil is analyzed in this study using PLAXIS 3D software. The results are compared with the experimental results and the results of PLAXIS 2D software. The purpose is to predict the performance of retaining walls under seismic loads. As a result, the research stated that the displacement with time was less than the results recorded depending on the program PLAXIS 2D. According to the comparison of the different analytical tools, the researchers concluded that the adoption of the PLAXIS 3D program gives results that are closer to reality, more accurate, and more reliable.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The dynamic response of the retaining structures is a complex issue, and a major challenge in their design, especially under seismic loading conditions. So a reliable and efficient solution following a computational approach, closer to reality, is required to obtain satisfactory results. Hence, this study came to clarify the effectiveness of the PLAXIS 3D program in predicting the performance, accuracy, and reliability of retaining walls. A case study of placing compressed materials as the backfill of the retaining wall soil is analyzed in this study using PLAXIS 3D software. The results are compared with the experimental results and the results of PLAXIS 2D software. The purpose is to predict the performance of retaining walls under seismic loads. As a result, the research stated that the displacement with time was less than the results recorded depending on the program PLAXIS 2D. According to the comparison of the different analytical tools, the researchers concluded that the adoption of the PLAXIS 3D program gives results that are closer to reality, more accurate, and more reliable.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.