Laura A. Dye, J. Pearl, Laura Smith, Bethany L Coulthard, Cori L. Butkiewicz, Z. Cooper, James Degrand, Jared Friedman, Inga K. Homfeld, H. Howard, Leroy Ironcloud, Shannon Wray
{"title":"Co-Occurring Wyoming Pinus Species Exhibit Differing Climate–Growth Relationships","authors":"Laura A. Dye, J. Pearl, Laura Smith, Bethany L Coulthard, Cori L. Butkiewicz, Z. Cooper, James Degrand, Jared Friedman, Inga K. Homfeld, H. Howard, Leroy Ironcloud, Shannon Wray","doi":"10.3959/TRR2021-5","DOIUrl":null,"url":null,"abstract":"ABSTRACT The North American Dendroecological Field week (NADEF) is an intensive dendrochronology workshop, funded in part by the National Science Foundation. The 2019 Introductory Group at NADEF developed two precisely dated tree-ring width chronologies for Pinus contorta (lodgepole pine) and Pinus flexilis (limber pine) at the Wolf Knob site ca. 5 km west of Beartooth Lake, WY, within the bounds of the Shoshone National Forest (SNF), in the Greater Yellowstone Ecosystem (GYE). Wolf Knob is a semi-arid, S- to SW-facing, mid- to high-elevation site, making it an ideal location to examine the climate sensitivity of annual tree-ring width increments. Here, we show that two co-located Pinus species exhibit differing climate–growth relationships, with P. contorta exhibiting relatively weak correlations with precipitation (r = 0.37; p < 0.01) and temperature (r = –0.23; p < 0.05) during the late summer, and P. flexilis exhibiting stronger overall correlations with both cool-season (r = 0.48; p < 0.01) and warm-season precipitation (r = 0.51; p < 0.01) as well as with snowpack records (r = 0.45; p < 0.05). Our results suggest these two Pinus species may face disparate threats in the face of regional climate change, with P. flexilis being particularly vulnerable to drought conditions and declining snowpacks in the GYE. The differing seasonal climate sensitivities of the two species is likely caused by microsite conditions (e.g. soil moisture capacity, incoming solar radiation) and distinct species-climate responses, underscoring the importance of not only site selection, but also microsite and individual selection in dendroclimatological sampling. Finally, this work contributes to identifying Snow Water Equivalent (SWE)-sensitive tree-ring proxies in the GYE, critical for understanding ongoing warming-induced snowpack declines across western North America, particularly given the projections of a largely snow-free (April 1) GYE by 2075.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"78 1","pages":"13 - 24"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/TRR2021-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The North American Dendroecological Field week (NADEF) is an intensive dendrochronology workshop, funded in part by the National Science Foundation. The 2019 Introductory Group at NADEF developed two precisely dated tree-ring width chronologies for Pinus contorta (lodgepole pine) and Pinus flexilis (limber pine) at the Wolf Knob site ca. 5 km west of Beartooth Lake, WY, within the bounds of the Shoshone National Forest (SNF), in the Greater Yellowstone Ecosystem (GYE). Wolf Knob is a semi-arid, S- to SW-facing, mid- to high-elevation site, making it an ideal location to examine the climate sensitivity of annual tree-ring width increments. Here, we show that two co-located Pinus species exhibit differing climate–growth relationships, with P. contorta exhibiting relatively weak correlations with precipitation (r = 0.37; p < 0.01) and temperature (r = –0.23; p < 0.05) during the late summer, and P. flexilis exhibiting stronger overall correlations with both cool-season (r = 0.48; p < 0.01) and warm-season precipitation (r = 0.51; p < 0.01) as well as with snowpack records (r = 0.45; p < 0.05). Our results suggest these two Pinus species may face disparate threats in the face of regional climate change, with P. flexilis being particularly vulnerable to drought conditions and declining snowpacks in the GYE. The differing seasonal climate sensitivities of the two species is likely caused by microsite conditions (e.g. soil moisture capacity, incoming solar radiation) and distinct species-climate responses, underscoring the importance of not only site selection, but also microsite and individual selection in dendroclimatological sampling. Finally, this work contributes to identifying Snow Water Equivalent (SWE)-sensitive tree-ring proxies in the GYE, critical for understanding ongoing warming-induced snowpack declines across western North America, particularly given the projections of a largely snow-free (April 1) GYE by 2075.
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.