Skew-normal Mean-variance Mixture of Birnbaum-Saunders Distribution

IF 0.1 Q4 STATISTICS & PROBABILITY
M. Tamandi, Hossein Negarestani, A. Jamalizadeh, Mehdi Amiri
{"title":"Skew-normal Mean-variance Mixture of Birnbaum-Saunders Distribution","authors":"M. Tamandi, Hossein Negarestani, A. Jamalizadeh, Mehdi Amiri","doi":"10.29252/JIRSS.18.2.87","DOIUrl":null,"url":null,"abstract":"This paper presents a skew-normal mean-variance mixture based on BirnbaumSaunders (SNMVBS) distribution and discusses some of its key properties. The SNMVBS distribution can be thought as a flexible extension of the normal mean-variance mixture based on Birnbaum-Saunders (NMVBS) distribution as it possesses one additional shape parameter for providing more flexibility with skewness and kurtosis. Next, we develop a computationally feasible ECM algorithm for the maximum likelihood estimation of the model parameters. Asymptotic standard errors of the ML estimates are obtained through an approximation of the observed information matrix. Finally, the usefulness of the proposed model and its fitting method are illustrated through a Monte-Carlo simulation as well as three real-life datasets.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"18 1","pages":"87-113"},"PeriodicalIF":0.1000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.18.2.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a skew-normal mean-variance mixture based on BirnbaumSaunders (SNMVBS) distribution and discusses some of its key properties. The SNMVBS distribution can be thought as a flexible extension of the normal mean-variance mixture based on Birnbaum-Saunders (NMVBS) distribution as it possesses one additional shape parameter for providing more flexibility with skewness and kurtosis. Next, we develop a computationally feasible ECM algorithm for the maximum likelihood estimation of the model parameters. Asymptotic standard errors of the ML estimates are obtained through an approximation of the observed information matrix. Finally, the usefulness of the proposed model and its fitting method are illustrated through a Monte-Carlo simulation as well as three real-life datasets.
Birnbaum-Saunders分布的偏正态均值-方差混合
本文提出了一种基于BirnbaumSaunders (SNMVBS)分布的偏态-正态均值-方差混合,并讨论了它的一些关键性质。SNMVBS分布可以看作是基于Birnbaum-Saunders (NMVBS)分布的正态均值-方差混合的灵活扩展,因为它增加了一个形状参数,在偏度和峰度方面提供了更大的灵活性。接下来,我们开发了一种计算可行的ECM算法,用于模型参数的最大似然估计。ML估计的渐近标准误差是通过对观察到的信息矩阵的近似得到的。最后,通过蒙特卡罗模拟和三个实际数据集说明了所提出模型及其拟合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信