Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

IF 0.1 Q4 STATISTICS & PROBABILITY
S. E. Ahmed, D. Aydın, E. Yılmaz
{"title":"Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data","authors":"S. E. Ahmed, D. Aydın, E. Yılmaz","doi":"10.52547/jirss.20.1.1","DOIUrl":null,"url":null,"abstract":"Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is to obtain a satisfactory estimate of the partially linear model with multi-collinear and right-censored using a modified ridge estimator. Results: To determine the performance of the method, a detailed simulation study is carried out and a kernel-type ridge estimator for PLM is investigated for two censorship solution techniques. The results are compared and presented with tables and figures. Necessary derivations for the modified semiparametric estimator are given in appendices.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jirss.20.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is to obtain a satisfactory estimate of the partially linear model with multi-collinear and right-censored using a modified ridge estimator. Results: To determine the performance of the method, a detailed simulation study is carried out and a kernel-type ridge estimator for PLM is investigated for two censorship solution techniques. The results are compared and presented with tables and figures. Necessary derivations for the modified semiparametric estimator are given in appendices.
右截尾数据下部分线性模型的核岭估计
目的:针对随机右删失数据下的部分线性模型,提出一种改进的核型岭估计。这种模式包括两个需要解决的主要问题:多重共线性和审查制度。为了解决这些问题,我们改进了基于合成数据转换和kNN插补技术的核估计器。本文的关键思想是使用改进的岭估计量来获得具有多重共线和右删失的部分线性模型的满意估计。结果:为了确定该方法的性能,进行了详细的仿真研究,并针对两种审查解决方案技术研究了PLM的核型岭估计器。对结果进行了比较,并用表格和数字表示。附录中给出了修正半参数估计量的必要导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信