The Kuh Toto volcanic-hosted copper deposit, Semnan Province, Iran: geochemical, fluid inclusion, and C and O isotopic studies

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Omid Javariani, Farhad Ehya, Mohammad Ali Aliabadi, Abbas Asgari, Mohammad Mehri
{"title":"The Kuh Toto volcanic-hosted copper deposit, Semnan Province, Iran: geochemical, fluid inclusion, and C and O isotopic studies","authors":"Omid Javariani, Farhad Ehya, Mohammad Ali Aliabadi, Abbas Asgari, Mohammad Mehri","doi":"10.1144/geochem2021-018","DOIUrl":null,"url":null,"abstract":"Supergene copper mineralization occurs at the Kuh Toto deposit, located 25 km to the west of Torud village in the Semnan Province, Iran. Mineralogical, fluid inclusion and stable isotopic (C and O) studies, as well as rare earth element (REE) geochemistry of whole rock and minerals are used to unravel the conditions under which the Cu ores formed. Malachite is the only copper ore mineral, and it is present as veinlets, coatings and small patches in Eocene volcanic rocks. Malachite is accompanied by minor calcite, manganese and iron oxides and oxyhydroxides, clay minerals, epidote, quartz and chrysocolla. Argillic and, to a lesser extent, propylitic hydrothermal alteration partially affected the basic volcanic host rocks. The chondrite-normalized REE patterns of malachite and calcite are similar to those of the volcanic host rocks. They are enriched in LREEs. The volcanic host rocks are enriched in Cu (187 ppm on average). Fluid inclusions hosted in calcite reveal that calcite precipitated from hydrothermal fluids at low temperatures (69–150°C) and low to moderate salinities (7.17–11.10 wt% NaCl equivalent). The oxygen isotopic geothermometry yielded an average temperature of 41°C for malachite formation. Geochemical and fluid inclusion evidence strongly support that mineral-forming elements, including Cu, originated from the associated volcanic rocks. Available data support the view that Cu was likely leached as mobile aqueous Cu2+ from the volcanic rocks by oxidizing surface waters. When Cu-enriched fluids entered the underlying groundwater environment, Cu was precipitated as malachite in fractures, via recombination with carbonate ions dissolved as CO2 in meteoric fluids.","PeriodicalId":55114,"journal":{"name":"Geochemistry-Exploration Environment Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry-Exploration Environment Analysis","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/geochem2021-018","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Supergene copper mineralization occurs at the Kuh Toto deposit, located 25 km to the west of Torud village in the Semnan Province, Iran. Mineralogical, fluid inclusion and stable isotopic (C and O) studies, as well as rare earth element (REE) geochemistry of whole rock and minerals are used to unravel the conditions under which the Cu ores formed. Malachite is the only copper ore mineral, and it is present as veinlets, coatings and small patches in Eocene volcanic rocks. Malachite is accompanied by minor calcite, manganese and iron oxides and oxyhydroxides, clay minerals, epidote, quartz and chrysocolla. Argillic and, to a lesser extent, propylitic hydrothermal alteration partially affected the basic volcanic host rocks. The chondrite-normalized REE patterns of malachite and calcite are similar to those of the volcanic host rocks. They are enriched in LREEs. The volcanic host rocks are enriched in Cu (187 ppm on average). Fluid inclusions hosted in calcite reveal that calcite precipitated from hydrothermal fluids at low temperatures (69–150°C) and low to moderate salinities (7.17–11.10 wt% NaCl equivalent). The oxygen isotopic geothermometry yielded an average temperature of 41°C for malachite formation. Geochemical and fluid inclusion evidence strongly support that mineral-forming elements, including Cu, originated from the associated volcanic rocks. Available data support the view that Cu was likely leached as mobile aqueous Cu2+ from the volcanic rocks by oxidizing surface waters. When Cu-enriched fluids entered the underlying groundwater environment, Cu was precipitated as malachite in fractures, via recombination with carbonate ions dissolved as CO2 in meteoric fluids.
伊朗塞姆南省Kuh Toto火山岩铜矿床:地球化学、流体包裹体和C和O同位素研究
表生铜矿发生在Kuh Toto矿床,位于伊朗Semnan省Torud村以西25公里处。利用矿物学、流体包裹体和稳定同位素(C、O)研究,以及全岩和全矿物的稀土元素地球化学研究,揭示了铜矿石的形成条件。孔雀石是唯一的铜矿矿物,在始新世火山岩中以细脉、涂层和小斑块的形式存在。孔雀石中还含有少量方解石、锰和铁的氧化物和氢氧化物、粘土矿物、绿帘石、石英和黄铜矿。泥质热液蚀变和较小程度的丙质热液蚀变部分影响了基性火山岩。孔雀石和方解石的球粒陨石归一化稀土模式与火山寄主岩相似。它们富含lree。火山寄主岩富集铜(平均187ppm)。方解石中的流体包裹体表明,方解石是在低温(69 ~ 150℃)和低至中盐度(7.17 ~ 11.10 wt% NaCl当量)条件下由热液流体析出的。氧同位素测温结果显示孔雀石地层的平均温度为41℃。地球化学和流体包裹体证据有力地支持成矿元素(包括铜)起源于伴生火山岩。现有的数据支持这样的观点,即Cu很可能是通过氧化地表水从火山岩中以流动的水Cu2+的形式淋滤出来的。当富Cu流体进入下垫区地下水环境时,Cu与大气流体中以CO2形式溶解的碳酸盐离子复合,以孔雀石的形式沉淀在裂缝中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry-Exploration Environment Analysis
Geochemistry-Exploration Environment Analysis 地学-地球化学与地球物理
CiteScore
3.60
自引率
16.70%
发文量
30
审稿时长
1 months
期刊介绍: Geochemistry: Exploration, Environment, Analysis (GEEA) is a co-owned journal of the Geological Society of London and the Association of Applied Geochemists (AAG). GEEA focuses on mineral exploration using geochemistry; related fields also covered include geoanalysis, the development of methods and techniques used to analyse geochemical materials such as rocks, soils, sediments, waters and vegetation, and environmental issues associated with mining and source apportionment. GEEA is well-known for its thematic sets on hot topics and regularly publishes papers from the biennial International Applied Geochemistry Symposium (IAGS). Papers that seek to integrate geological, geochemical and geophysical methods of exploration are particularly welcome, as are those that concern geochemical mapping and those that comprise case histories. Given the many links between exploration and environmental geochemistry, the journal encourages the exchange of concepts and data; in particular, to differentiate various sources of elements. GEEA publishes research articles; discussion papers; book reviews; editorial content and thematic sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信