UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS

Q4 Computer Science
Jorge Espindola Zepeda, J. Montoya
{"title":"UNDERSTANDING A LIKELIHOOD FLAT PROBLEM: INFERENCES ON THE RATIO OF REGRESSION COEFFICIENTS IN LINEAR MODELS","authors":"Jorge Espindola Zepeda, J. Montoya","doi":"10.15446/rev.fac.cienc.v11n2.97782","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a flat likelihood function shape that arises when performing inferences on the ratio of two regression coefficients in a linear regression model, parameter of interest in various applications. Due to this shape, infinite length likelihood-confidence intervals can be obtained. In the cases discussed here these likelihood-confidence intervals are related to the nested models problem, which is analyzed in detail through three illustrative simulated cases. It is essential to understand the shapes of the likelihood function in order to legitimately criticize likelihood inferences. This is of particular importance since the likelihood function is a key ingredient used in many inference methods","PeriodicalId":31950,"journal":{"name":"Revista de la Facultad de Ciencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Facultad de Ciencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rev.fac.cienc.v11n2.97782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze a flat likelihood function shape that arises when performing inferences on the ratio of two regression coefficients in a linear regression model, parameter of interest in various applications. Due to this shape, infinite length likelihood-confidence intervals can be obtained. In the cases discussed here these likelihood-confidence intervals are related to the nested models problem, which is analyzed in detail through three illustrative simulated cases. It is essential to understand the shapes of the likelihood function in order to legitimately criticize likelihood inferences. This is of particular importance since the likelihood function is a key ingredient used in many inference methods
理解似然平坦问题:线性模型中回归系数比值的推断
在本文中,我们分析了当对线性回归模型中两个回归系数的比率进行推断时出现的平坦似然函数形状,这是各种应用中感兴趣的参数。由于这种形状,可以获得无限长的似然置信区间。在这里讨论的情况下,这些似然置信区间与嵌套模型问题有关,该问题通过三个示例性模拟案例进行了详细分析。为了合理地批评似然推断,理解似然函数的形状是至关重要的。这一点特别重要,因为似然函数是许多推理方法中使用的关键成分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
6
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信