Shanlin Du, G. Lv, Wenhui Ma, Guan-Wen Gu, Boqiang Fu
{"title":"Effect of inlet gas velocity on gas-solid fluidization characteristics in fluidized bed","authors":"Shanlin Du, G. Lv, Wenhui Ma, Guan-Wen Gu, Boqiang Fu","doi":"10.1515/ijcre-2022-0226","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the Eulerian–Eulerian TFM model is used to simulate the fluidization of the synthesis process of organosilicon monomers. A new method for analyzing the gas-solid fluidization characteristics is proposed by combining the gas-solid two-phase flow evolution formula with the parameters such as particle concentration and bed voidage. On this basis, the fluidization characteristics of silicon powder particles at constant velocity and variable velocity are compared, and the fluidization characteristics of silicon powder particles with different particle sizes under five sets of variable velocity are discussed. The simulation results show that compared with constant velocity, the mean bed voidage is 0.55 when silicon particles adopt variable velocity, which can not only keep silicon particles fully fluidized but also improve the problem of poor gas-solid contact. For silicon particles with particle diameters of 300.1–515 μm, variable velocity fluidization has the advantages of uniform bed distribution and sufficient gas-solid fluidization. In the five groups of variable velocity function, when the inlet gas velocity and time are the quadratic functions of the opening upward, the fluctuation of pressure fluctuation is small, and the maximum fluctuation range of particle solid phase distribution is only 0.13, indicating that the heat and mass transfer efficiency between silicon particles is better, the gas-solid mixing is sufficient, and the gas-solid fluidization quality is better.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, the Eulerian–Eulerian TFM model is used to simulate the fluidization of the synthesis process of organosilicon monomers. A new method for analyzing the gas-solid fluidization characteristics is proposed by combining the gas-solid two-phase flow evolution formula with the parameters such as particle concentration and bed voidage. On this basis, the fluidization characteristics of silicon powder particles at constant velocity and variable velocity are compared, and the fluidization characteristics of silicon powder particles with different particle sizes under five sets of variable velocity are discussed. The simulation results show that compared with constant velocity, the mean bed voidage is 0.55 when silicon particles adopt variable velocity, which can not only keep silicon particles fully fluidized but also improve the problem of poor gas-solid contact. For silicon particles with particle diameters of 300.1–515 μm, variable velocity fluidization has the advantages of uniform bed distribution and sufficient gas-solid fluidization. In the five groups of variable velocity function, when the inlet gas velocity and time are the quadratic functions of the opening upward, the fluctuation of pressure fluctuation is small, and the maximum fluctuation range of particle solid phase distribution is only 0.13, indicating that the heat and mass transfer efficiency between silicon particles is better, the gas-solid mixing is sufficient, and the gas-solid fluidization quality is better.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.