{"title":"Methods for estimating vital rates of greater sage-grouse broods: a review","authors":"Ian P. Riley, C. Conway","doi":"10.2981/wlb.00700","DOIUrl":null,"url":null,"abstract":"Biologists use a variety of methods to estimate productivity and resource selection of birds. The effectiveness and suitability of each method depends on the study's objectives, but is also influenced by many important traits, including detection probability, disturbance of focal birds and sampling frequency. We reviewed 504 greater sage-grouse Centrocercus urophasianus papers published from 1990 to 2019 to document the most common brood survey methods used by investigators and summarized if and how they used brood survey data to estimate brood survival and detection probability. Of the 504 papers, 16.1% (n = 81) had useful information relevant to the review. The most common methods included daytime visual surveys (46.9%; n = 38), daytime flush surveys (33.3%; n = 27), nocturnal spotlight surveys (19.8%; n = 16), radio-tagged chicks (16.0%; n = 13), wing surveys (9.9%; n = 8), brood routes (4.9%; n = 4) and pointing dogs (4.9%; n = 4). Fifty-nine of the 81 papers used >1 method, only 2 of the 81 papers measured or reported detection probability, and none reported the level of disturbance caused by the method. Studies varied widely regarding the age of the brood when brood fate was confirmed (x̄ = 44.4 days post-hatch, range 14–84 days). The frequency of brood sampling visits also varied greatly among studies (range = 1.19–3.85 surveys/brood/week) and this variation complicates comparison in fecundity and survival estimates across studies. Furthermore, 35 papers used >1 maternal behavior as purported indicators of brood fate, but none of them documented how accurate their indicators were. Future studies could reduce variance in estimates of sage-grouse fecundity and brood survival by employing empirical methods to estimate detection probability, standardizing brood sampling methods and conducting trials to document the effects of hen or brood capture, handling and flushing on brood survival estimates. Moreover, the accuracy of commonly used indicators of brood fate, including maternal behaviors, flocking behavior and distance moved after flush needs verification.","PeriodicalId":54405,"journal":{"name":"Wildlife Biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2981/wlb.00700","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Biologists use a variety of methods to estimate productivity and resource selection of birds. The effectiveness and suitability of each method depends on the study's objectives, but is also influenced by many important traits, including detection probability, disturbance of focal birds and sampling frequency. We reviewed 504 greater sage-grouse Centrocercus urophasianus papers published from 1990 to 2019 to document the most common brood survey methods used by investigators and summarized if and how they used brood survey data to estimate brood survival and detection probability. Of the 504 papers, 16.1% (n = 81) had useful information relevant to the review. The most common methods included daytime visual surveys (46.9%; n = 38), daytime flush surveys (33.3%; n = 27), nocturnal spotlight surveys (19.8%; n = 16), radio-tagged chicks (16.0%; n = 13), wing surveys (9.9%; n = 8), brood routes (4.9%; n = 4) and pointing dogs (4.9%; n = 4). Fifty-nine of the 81 papers used >1 method, only 2 of the 81 papers measured or reported detection probability, and none reported the level of disturbance caused by the method. Studies varied widely regarding the age of the brood when brood fate was confirmed (x̄ = 44.4 days post-hatch, range 14–84 days). The frequency of brood sampling visits also varied greatly among studies (range = 1.19–3.85 surveys/brood/week) and this variation complicates comparison in fecundity and survival estimates across studies. Furthermore, 35 papers used >1 maternal behavior as purported indicators of brood fate, but none of them documented how accurate their indicators were. Future studies could reduce variance in estimates of sage-grouse fecundity and brood survival by employing empirical methods to estimate detection probability, standardizing brood sampling methods and conducting trials to document the effects of hen or brood capture, handling and flushing on brood survival estimates. Moreover, the accuracy of commonly used indicators of brood fate, including maternal behaviors, flocking behavior and distance moved after flush needs verification.
期刊介绍:
WILDLIFE BIOLOGY is a high-quality scientific forum directing concise and up-to-date information to scientists, administrators, wildlife managers and conservationists. The journal encourages and welcomes original papers, short communications and reviews written in English from throughout the world. The journal accepts theoretical, empirical, and practical articles of high standard from all areas of wildlife science with the primary task of creating the scientific basis for the enhancement of wildlife management practices. Our concept of ''wildlife'' mainly includes mammal and bird species, but studies on other species or phenomena relevant to wildlife management are also of great interest. We adopt a broad concept of wildlife management, including all structures and actions with the purpose of conservation, sustainable use, and/or control of wildlife and its habitats, in order to safeguard sustainable relationships between wildlife and other human interests.