Dislocated accountabilities in the “AI supply chain”: Modularity and developers’ notions of responsibility

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
D. Widder, D. Nafus
{"title":"Dislocated accountabilities in the “AI supply chain”: Modularity and developers’ notions of responsibility","authors":"D. Widder, D. Nafus","doi":"10.1177/20539517231177620","DOIUrl":null,"url":null,"abstract":"Responsible artificial intelligence guidelines ask engineers to consider how their systems might harm. However, contemporary artificial intelligence systems are built by composing many preexisting software modules that pass through many hands before becoming a finished product or service. How does this shape responsible artificial intelligence practice? In interviews with 27 artificial intelligence engineers across industry, open source, and academia, our participants often did not see the questions posed in responsible artificial intelligence guidelines to be within their agency, capability, or responsibility to address. We use Suchman's “located accountability” to show how responsible artificial intelligence labor is currently organized and to explore how it could be done differently. We identify cross-cutting social logics, like modularizability, scale, reputation, and customer orientation, that organize which responsible artificial intelligence actions do take place and which are relegated to low status staff or believed to be the work of the next or previous person in the imagined “supply chain.” We argue that current responsible artificial intelligence interventions, like ethics checklists and guidelines that assume panoptical knowledge and control over systems, could be improved by taking a located accountability approach, recognizing where relations and obligations might intertwine inside and outside of this supply chain.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231177620","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Responsible artificial intelligence guidelines ask engineers to consider how their systems might harm. However, contemporary artificial intelligence systems are built by composing many preexisting software modules that pass through many hands before becoming a finished product or service. How does this shape responsible artificial intelligence practice? In interviews with 27 artificial intelligence engineers across industry, open source, and academia, our participants often did not see the questions posed in responsible artificial intelligence guidelines to be within their agency, capability, or responsibility to address. We use Suchman's “located accountability” to show how responsible artificial intelligence labor is currently organized and to explore how it could be done differently. We identify cross-cutting social logics, like modularizability, scale, reputation, and customer orientation, that organize which responsible artificial intelligence actions do take place and which are relegated to low status staff or believed to be the work of the next or previous person in the imagined “supply chain.” We argue that current responsible artificial intelligence interventions, like ethics checklists and guidelines that assume panoptical knowledge and control over systems, could be improved by taking a located accountability approach, recognizing where relations and obligations might intertwine inside and outside of this supply chain.
“AI供应链”中的错位责任:模块化与开发者的责任观念
负责任的人工智能指导方针要求工程师考虑他们的系统可能会造成怎样的危害。然而,当代的人工智能系统是由许多预先存在的软件模块组成的,这些模块在成为成品或服务之前经过了许多人的处理。这是如何形成负责任的人工智能实践的?在对来自行业、开源和学术界的27名人工智能工程师的采访中,我们的参与者往往认为负责任的人工智能指南中提出的问题不在他们的机构、能力或责任范围内。我们使用Suchman的“定位问责制”来展示当前负责任的人工智能劳动是如何组织的,并探索如何以不同的方式进行。我们确定了跨领域的社会逻辑,如模块化、规模、声誉和客户导向,这些逻辑组织了哪些负责任的人工智能行动确实发生了,哪些被降级为低地位的员工,或者被认为是想象中的“供应链”中下一个或前一个人的工作,比如道德检查表和准则,假设对系统有全面的了解和控制,可以通过采取定位问责方法来改进,认识到供应链内外的关系和义务可能交织在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信