Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira
{"title":"Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products","authors":"Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira","doi":"10.1515/agms-2020-0132","DOIUrl":null,"url":null,"abstract":"Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.