Numerical simulation of cold emission in coaxial diode with magnetic isolation

A. Belov, O. Loza, K. Lovetskiy, S. P. Karnilovich, L. Sevastianov
{"title":"Numerical simulation of cold emission in coaxial diode with magnetic isolation","authors":"A. Belov, O. Loza, K. Lovetskiy, S. P. Karnilovich, L. Sevastianov","doi":"10.22363/2658-4670-2022-30-3-217-230","DOIUrl":null,"url":null,"abstract":"Due to the emergence and active development of new areas of application of powerful and super-powerful microwave vacuum devices, interest in studying the behavior of ensembles of charged particles moving in the interaction space has increased. An example is an electron beam formed in a coaxial diode with magnetic isolation. Numerical simulation of emission in such a diode is traditionally carried out using particle-in-cell methods. They are based on the simultaneous calculation of the equations of motion of particles and the Maxwell’s equations for the electromagnetic field. In the present work, a new computational approach called the point macroparticle method is proposed. In it, the motion of particles is described by the equations of relativistic mechanics, and explicit expressions are written out for fields in a quasi-static approximation. Calculations of the formation of a relativistic electron beam in a coaxial diode with magnetic isolation are performed and a comparison is made with the known theoretical relations for the electron velocity in the beam and for the beam current. Excellent agreement of calculation results with theoretical formulas is obtained.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2022-30-3-217-230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the emergence and active development of new areas of application of powerful and super-powerful microwave vacuum devices, interest in studying the behavior of ensembles of charged particles moving in the interaction space has increased. An example is an electron beam formed in a coaxial diode with magnetic isolation. Numerical simulation of emission in such a diode is traditionally carried out using particle-in-cell methods. They are based on the simultaneous calculation of the equations of motion of particles and the Maxwell’s equations for the electromagnetic field. In the present work, a new computational approach called the point macroparticle method is proposed. In it, the motion of particles is described by the equations of relativistic mechanics, and explicit expressions are written out for fields in a quasi-static approximation. Calculations of the formation of a relativistic electron beam in a coaxial diode with magnetic isolation are performed and a comparison is made with the known theoretical relations for the electron velocity in the beam and for the beam current. Excellent agreement of calculation results with theoretical formulas is obtained.
磁隔离同轴二极管冷发射的数值模拟
由于大功率和超大功率微波真空器件新应用领域的出现和积极发展,人们对研究带电粒子在相互作用空间中运动的系综的行为越来越感兴趣。一个例子是在具有磁隔离的同轴二极管中形成的电子束。这种二极管的发射数值模拟传统上是用粒子池法进行的。它们是基于粒子运动方程和麦克斯韦电磁场方程的同时计算。本文提出了一种新的计算方法——点宏粒子法。其中,粒子的运动用相对论力学方程来描述,并在准静态近似下写出了场的显式表达式。本文对磁隔离同轴二极管中相对论电子束的形成进行了计算,并与已知的电子束中电子速度和电子束电流的理论关系进行了比较。计算结果与理论公式吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信