Improved spectral mismatch and performance of a phosphor-converted light-emitting diode solar simulator

Q2 Computer Science
N. Watjanatepin, Khanittha Wannakam, Paiboon Kiatsookkanatorn, C. Boonmee, Patcharanan Sritanauthaikorn
{"title":"Improved spectral mismatch and performance of a phosphor-converted light-emitting diode solar simulator","authors":"N. Watjanatepin, Khanittha Wannakam, Paiboon Kiatsookkanatorn, C. Boonmee, Patcharanan Sritanauthaikorn","doi":"10.11591/ijece.v13i5.pp4931-4941","DOIUrl":null,"url":null,"abstract":"A phosphor-converted light-emitting diode (LED) solar simulator is an illuminance device that produced irradiance intensity and spectral close to the sunlight. It is determined as spectral mismatch, non-uniformity of irradiance, and temporal instability. This paper has improved the LED solar simulator (LSS) system to have a spectral distribution consistent with the AM1.5G spectrum at 100%. It was developed as a new prototype to have the AAA class spectral characteristics, time instability, and inconsistency according to IEC 60904-9. The results showed that an optimal approach was to use phosphor-converted natural white LED (pc-nWLED), combining a monochromatic near-infrared (NIR) (730, 800, 850, 940, and 1,000 nm) as well as the proposed LSS system capable of generating 1,000 W/m2 irradiation over the test plane of 125×125 mm and operated continuously in a constant temperature LED state for at least 2 hours, therefore suitable for demonstration of solar cell features under standard test condition (STC) in the laboratory.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4931-4941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

A phosphor-converted light-emitting diode (LED) solar simulator is an illuminance device that produced irradiance intensity and spectral close to the sunlight. It is determined as spectral mismatch, non-uniformity of irradiance, and temporal instability. This paper has improved the LED solar simulator (LSS) system to have a spectral distribution consistent with the AM1.5G spectrum at 100%. It was developed as a new prototype to have the AAA class spectral characteristics, time instability, and inconsistency according to IEC 60904-9. The results showed that an optimal approach was to use phosphor-converted natural white LED (pc-nWLED), combining a monochromatic near-infrared (NIR) (730, 800, 850, 940, and 1,000 nm) as well as the proposed LSS system capable of generating 1,000 W/m2 irradiation over the test plane of 125×125 mm and operated continuously in a constant temperature LED state for at least 2 hours, therefore suitable for demonstration of solar cell features under standard test condition (STC) in the laboratory.
改进的荧光粉转换发光二极管太阳模拟器的光谱失配和性能
磷光体转换发光二极管(LED)太阳能模拟器是一种产生接近太阳光的辐照度和光谱的照明设备。它被确定为光谱失配、辐照度的不均匀性和时间不稳定性。本文对LED太阳模拟器(LSS)系统进行了改进,使其光谱分布在100%时与AM1.5G光谱一致。它是作为一个新的原型开发的,具有AAA级光谱特性、时间不稳定性和不一致性,符合IEC 60904-9。结果表明,最佳方法是使用磷光体转换的天然白色LED(pc-nWLED),结合单色近红外(NIR)(730800850940和1000nm)以及所提出的LSS系统,该系统能够在125×125mm的测试平面上产生1000W/m2的辐射,并在恒温LED状态下连续工作至少2小时,因此适合在实验室中在标准测试条件(STC)下演示太阳能电池特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信