Paguédame Game, Mingyan Wang, P. Audra, P. Gourbesville
{"title":"Flood modelling for a real-time decision support system of the covered Lower Paillons River, Nice, France","authors":"Paguédame Game, Mingyan Wang, P. Audra, P. Gourbesville","doi":"10.2166/hydro.2023.181","DOIUrl":null,"url":null,"abstract":"\n \n Nice Metropolis in Alpes Maritimes, France is prone to flood. The city is crossed by the Lower Paillons River (LPR). Its discharge for a return period of 100 years is estimated at 794 m3/s. Part of the river is covered by 2 km. In addition, there are two retention storages in the river bed and a floodable road tunnel on the left bank. Due to the increase in urban development, flood management is challenging. An existing decision support system (DSS), Aquavar, uses DHI Mike tools to reproduce runoff for the Lower Var River in the same region. To extend this system to the LPR and reinforce flood management, a new modelling tool adapted to the characteristics of the LPR is needed. Consequently, this research utilizes the DHI MIKEPLUS tool to develop a 1D–2D coupled model for real-time flood management. The results demonstrate that flood events like those in 2017 and 2019 were correctly reproduced. The linear regression R2 is above 0.8 for all stations. It was also estimated that the covered river (CR) should stay clean to avoid widespread flooding in the urban area. Overall, the model is useful for simulating flow in real time and can help sustain urban development.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.181","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Nice Metropolis in Alpes Maritimes, France is prone to flood. The city is crossed by the Lower Paillons River (LPR). Its discharge for a return period of 100 years is estimated at 794 m3/s. Part of the river is covered by 2 km. In addition, there are two retention storages in the river bed and a floodable road tunnel on the left bank. Due to the increase in urban development, flood management is challenging. An existing decision support system (DSS), Aquavar, uses DHI Mike tools to reproduce runoff for the Lower Var River in the same region. To extend this system to the LPR and reinforce flood management, a new modelling tool adapted to the characteristics of the LPR is needed. Consequently, this research utilizes the DHI MIKEPLUS tool to develop a 1D–2D coupled model for real-time flood management. The results demonstrate that flood events like those in 2017 and 2019 were correctly reproduced. The linear regression R2 is above 0.8 for all stations. It was also estimated that the covered river (CR) should stay clean to avoid widespread flooding in the urban area. Overall, the model is useful for simulating flow in real time and can help sustain urban development.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.