Persistence of autoregressive sequences with logarithmic tails

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
D. Denisov, Gunter Hinrich, Martin Kolb, V. Wachtel
{"title":"Persistence of autoregressive sequences with logarithmic tails","authors":"D. Denisov, Gunter Hinrich, Martin Kolb, V. Wachtel","doi":"10.1214/22-ejp879","DOIUrl":null,"url":null,"abstract":"We consider autoregressive sequences Xn = aXn−1 + ξn and Mn = max{aMn−1, ξn} with a constant a ∈ (0, 1) and with positive, independent and identically distributed innovations {ξk}. It is known that if P(ξ1 > x) ∼ d log x with some d ∈ (0,− log a) then the chains {Xn} and {Mn} are null recurrent. We investigate the tail behaviour of recurrence times in this case of logarithmically decaying tails. More precisely, we show that the tails of recurrence times are regularly varying of index −1− d/ log a. We also prove limit theorems for {Xn} and {Mn} conditioned to stay over a fixed level x0. Furthermore, we study tail asymptotics for recurrence times of {Xn} and {Mn} in the case when these chains are positive recurrent and the tail of log ξ1 is subexponential.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp879","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We consider autoregressive sequences Xn = aXn−1 + ξn and Mn = max{aMn−1, ξn} with a constant a ∈ (0, 1) and with positive, independent and identically distributed innovations {ξk}. It is known that if P(ξ1 > x) ∼ d log x with some d ∈ (0,− log a) then the chains {Xn} and {Mn} are null recurrent. We investigate the tail behaviour of recurrence times in this case of logarithmically decaying tails. More precisely, we show that the tails of recurrence times are regularly varying of index −1− d/ log a. We also prove limit theorems for {Xn} and {Mn} conditioned to stay over a fixed level x0. Furthermore, we study tail asymptotics for recurrence times of {Xn} and {Mn} in the case when these chains are positive recurrent and the tail of log ξ1 is subexponential.
具有对数尾的自回归序列的持续性
我们考虑自回归序列Xn = aXn−1 + ξn和Mn = max{aMn−1,ξn},具有常数a∈(0,1)和正、独立、同分布创新{ξk}。已知如果P(ξ1 > x) ~ d log x,其中d∈(0,- log a),则链{Xn}和{Mn}是零循环的。我们研究了在对数衰减尾的情况下,递归时间的尾行为。更准确地说,我们证明了递归时间的尾部是有规律地变化的索引- 1 - d/ log a。我们还证明了{Xn}和{Mn}的极限定理,条件是保持在固定水平x0以上。进一步,我们研究了{Xn}和{Mn}的递归次数的尾部渐近性,当这些链是正递归且log ξ1的尾部是次指数时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信