Asymptotic vectors of entire curves

Q3 Mathematics
Y. Savchuk, Andriy Ivanovych Bandura
{"title":"Asymptotic vectors of entire curves","authors":"Y. Savchuk, Andriy Ivanovych Bandura","doi":"10.30970/ms.56.1.48-54","DOIUrl":null,"url":null,"abstract":"We introduce a concept of asymptotic vector of an entire curve with linearly independent components and without common zeros and investigate a relationship between the asymptotic vectors and the Picard exceptional vectors. \nA non-zero vector $\\vec{a}=(a_1,a_2,\\ldots,a_p)\\in \\mathbb{C}^{p}$ is called an asymptotic vector for the entire curve $\\vec{G}(z)=(g_1(z),g_2(z),\\ldots,g_p(z))$ if there exists a continuous curve $L: \\mathbb{R}_+\\to \\mathbb{C}$ given by an equation $z=z\\left(t\\right)$, $0\\le t<\\infty $, $\\left|z\\left(t\\right)\\right|<\\infty $, $z\\left(t\\right)\\to \\infty $ as $t\\to \\infty $ such that$$\\lim\\limits_{\\stackrel{z\\to\\infty}{z\\in L}} \\frac{\\vec{G}(z)\\vec{a} }{\\big\\|\\vec{G}(z)\\big\\|}=\\lim\\limits_{t\\to\\infty} \\frac{\\vec{G}(z(t))\\vec{a} }{\\big\\|\\vec{G}(z(t))\\big\\|} =0,$$ where $\\big\\|\\vec{G}(z)\\big\\|=\\big(|g_1(z)|^2+\\ldots +|g_p(z)|^2\\big)^{1/2}$, $\\vec{G}(z)\\vec{a}=g_1(z)\\cdot\\bar{a}_1+g_2(z)\\cdot\\bar{a}_2+\\ldots+g_p(z)\\cdot\\bar{a}_p$. A non-zero vector $\\vec{a}=(a_1,a_2,\\ldots,a_p)\\in \\mathbb{C}^{p}$ is called a Picard exceptional vector of an entire curve $\\vec{G}(z)$ if the function $\\vec{G}(z)\\vec{a}$ has a finite number of zeros in $\\left\\{\\left|z\\right|<\\infty \\right\\}$. \nWe prove that any Picard exceptional vector of transcendental entire curve with linearly independent com\\-po\\-nents and without common zeros is an asymptotic vector.Here we de\\-mon\\-stra\\-te that the exceptional vectors in the sense of Borel or Nevanlina and, moreover, in the sense of Valiron do not have to be asymptotic. For this goal we use an example of meromorphic function of finite positive order, for which $\\infty $ is no asymptotic value, but it is the Nevanlinna exceptional value. This function is constructed in known Goldberg and Ostrovskii's monograph``Value Distribution of Meromorphic Functions''.Other our result describes sufficient conditions providing that some vectors are asymptotic for transcendental entire curve of finite order with linearly independent components and without common zeros. In this result, we require that the order of the Nevanlinna counting function for this curve and for each such a vector is less than order of the curve.At the end of paper we formulate three unsolved problems concerning asymptotic vectors of entire curve.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.1.48-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a concept of asymptotic vector of an entire curve with linearly independent components and without common zeros and investigate a relationship between the asymptotic vectors and the Picard exceptional vectors. A non-zero vector $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ is called an asymptotic vector for the entire curve $\vec{G}(z)=(g_1(z),g_2(z),\ldots,g_p(z))$ if there exists a continuous curve $L: \mathbb{R}_+\to \mathbb{C}$ given by an equation $z=z\left(t\right)$, $0\le t<\infty $, $\left|z\left(t\right)\right|<\infty $, $z\left(t\right)\to \infty $ as $t\to \infty $ such that$$\lim\limits_{\stackrel{z\to\infty}{z\in L}} \frac{\vec{G}(z)\vec{a} }{\big\|\vec{G}(z)\big\|}=\lim\limits_{t\to\infty} \frac{\vec{G}(z(t))\vec{a} }{\big\|\vec{G}(z(t))\big\|} =0,$$ where $\big\|\vec{G}(z)\big\|=\big(|g_1(z)|^2+\ldots +|g_p(z)|^2\big)^{1/2}$, $\vec{G}(z)\vec{a}=g_1(z)\cdot\bar{a}_1+g_2(z)\cdot\bar{a}_2+\ldots+g_p(z)\cdot\bar{a}_p$. A non-zero vector $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ is called a Picard exceptional vector of an entire curve $\vec{G}(z)$ if the function $\vec{G}(z)\vec{a}$ has a finite number of zeros in $\left\{\left|z\right|<\infty \right\}$. We prove that any Picard exceptional vector of transcendental entire curve with linearly independent com\-po\-nents and without common zeros is an asymptotic vector.Here we de\-mon\-stra\-te that the exceptional vectors in the sense of Borel or Nevanlina and, moreover, in the sense of Valiron do not have to be asymptotic. For this goal we use an example of meromorphic function of finite positive order, for which $\infty $ is no asymptotic value, but it is the Nevanlinna exceptional value. This function is constructed in known Goldberg and Ostrovskii's monograph``Value Distribution of Meromorphic Functions''.Other our result describes sufficient conditions providing that some vectors are asymptotic for transcendental entire curve of finite order with linearly independent components and without common zeros. In this result, we require that the order of the Nevanlinna counting function for this curve and for each such a vector is less than order of the curve.At the end of paper we formulate three unsolved problems concerning asymptotic vectors of entire curve.
整曲线的渐近向量
引入了具有线性无关分量且无公共零的整条曲线的渐近向量的概念,并研究了渐近向量与Picard例外向量之间的关系。一个非零向量 $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ 称为整条曲线的渐近向量 $\vec{G}(z)=(g_1(z),g_2(z),\ldots,g_p(z))$ 如果存在连续曲线 $L: \mathbb{R}_+\to \mathbb{C}$ 由方程给出 $z=z\left(t\right)$, $0\le t<\infty $, $\left|z\left(t\right)\right|<\infty $, $z\left(t\right)\to \infty $ as $t\to \infty $ 这样$$\lim\limits_{\stackrel{z\to\infty}{z\in L}} \frac{\vec{G}(z)\vec{a} }{\big\|\vec{G}(z)\big\|}=\lim\limits_{t\to\infty} \frac{\vec{G}(z(t))\vec{a} }{\big\|\vec{G}(z(t))\big\|} =0,$$ 在哪里 $\big\|\vec{G}(z)\big\|=\big(|g_1(z)|^2+\ldots +|g_p(z)|^2\big)^{1/2}$, $\vec{G}(z)\vec{a}=g_1(z)\cdot\bar{a}_1+g_2(z)\cdot\bar{a}_2+\ldots+g_p(z)\cdot\bar{a}_p$. 一个非零向量 $\vec{a}=(a_1,a_2,\ldots,a_p)\in \mathbb{C}^{p}$ 称为整条曲线的皮卡德例外向量 $\vec{G}(z)$ 如果函数 $\vec{G}(z)\vec{a}$ 有有限个0吗 $\left\{\left|z\right|<\infty \right\}$. 证明了任何具有线性无关的单向量和无公零的超越整曲线的Picard例外向量是一个渐近向量。这里我们证明了Borel或Nevanlina意义上的例外向量,以及Valiron意义上的例外向量不一定是渐近的。为了达到这个目的,我们使用了一个有限正阶亚纯函数的例子 $\infty $ 不是渐近值,但它是奈万林纳异常值。这个函数是在已知的Goldberg和Ostrovskii的专著“亚纯函数的值分布”中构造的。另外,我们的结果给出了有限阶具有线性无关分量且无公共零的超越整曲线的一些向量是渐近的充分条件。在这个结果中,我们要求这条曲线和每个这样的向量的奈万林纳计数函数的阶数小于曲线的阶数。最后给出了关于整条曲线渐近向量的三个未解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信