Restructuring of silica supported vanadia during propane oxidative dehydrogenation studied by combined synchrotron radiation based in situ soft X-ray absorption and photoemission
M. Hävecker, Pascal Düngen, S. Buller, A. Knop‐Gericke, A. Trunschke, R. Schlögl
{"title":"Restructuring of silica supported vanadia during propane oxidative dehydrogenation studied by combined synchrotron radiation based in situ soft X-ray absorption and photoemission","authors":"M. Hävecker, Pascal Düngen, S. Buller, A. Knop‐Gericke, A. Trunschke, R. Schlögl","doi":"10.1080/2055074X.2017.1287535","DOIUrl":null,"url":null,"abstract":"Abstract A series of vanadia catalysts supported on mesoporous silica SBA-15 has been prepared with a loading in the range of 2–14 wt-% V and characterized under oxygen and propane oxidative dehydrogenation reaction conditions at elevated temperature up to 550 °C. In situ soft X-ray absorption spectra at the vanadium L- and oxygen K-edges and in situ synchrotron based X-ray photoemission spectra reveal a restructuring of vanadium species that results in an enhanced degree of dispersion of molecular vanadia species on the silica support. The impact of the X-ray beam on the XAS spectra of dispersed VxOy species has been studied and a brief perspective of X-ray based electron spectroscopy as a probe in catalyst characterization is given.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2055074X.2017.1287535","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2055074X.2017.1287535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract A series of vanadia catalysts supported on mesoporous silica SBA-15 has been prepared with a loading in the range of 2–14 wt-% V and characterized under oxygen and propane oxidative dehydrogenation reaction conditions at elevated temperature up to 550 °C. In situ soft X-ray absorption spectra at the vanadium L- and oxygen K-edges and in situ synchrotron based X-ray photoemission spectra reveal a restructuring of vanadium species that results in an enhanced degree of dispersion of molecular vanadia species on the silica support. The impact of the X-ray beam on the XAS spectra of dispersed VxOy species has been studied and a brief perspective of X-ray based electron spectroscopy as a probe in catalyst characterization is given.