Compatibility and companions for Leonard pairs

IF 0.7 4区 数学 Q2 Mathematics
K. Nomura, Paul M. Terwilliger
{"title":"Compatibility and companions for Leonard pairs","authors":"K. Nomura, Paul M. Terwilliger","doi":"10.13001/ela.2022.6861","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts are roughly described as follows. Let $\\mathbb{F}$ denote a field, and let $V$ denote a vector space over $\\mathbb{F}$ with finite positive dimension.A Leonard pair on $V$ is an ordered pair of diagonalizable $\\mathbb{F}$-linear maps $A : V \\to V$ and $A^* : V \\to V$ that each act in an irreducible tridiagonal fashion on an eigenbasis for the other one. Leonard pairs $A,A^*$ and $B,B^*$ on $V$ are said to be compatible whenever $A^* = B^*$ and $[A,A^*] = [B,B^*]$, where $[r,s] = r s - s r$. For a Leonard pair $A,A^*$ on $V$, by a companion of $A,A^*$ we mean an $\\mathbb{F}$-linear map $K: V \\to V$ such that $K$ is a polynomial in $A^*$ and $A-K, A^*$ is a Leonard pair on $V$. The concepts of compatibility and companion are related as follows. For compatible Leonard pairs $A,A^*$ and $B,B^*$ on $V$, define $K = A-B$. Then $K$ is a companion of $A,A^*$. For a Leonard pair $A,A^*$ on $V$ and a companion $K$ of $A,A^*$,define $B = A-K$ and $B^* = A^*$. Then $B,B^*$ is a Leonard pair on $V$ that is compatible with $A,A^*$. Let $A,A^*$ denote a Leonard pair on $V$. We find all the Leonard pairs $B, B^*$ on $V$ that are compatible with $A,A^*$.For each solution $B, B^*$, we describe the corresponding companion $K = A-B$.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6861","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts are roughly described as follows. Let $\mathbb{F}$ denote a field, and let $V$ denote a vector space over $\mathbb{F}$ with finite positive dimension.A Leonard pair on $V$ is an ordered pair of diagonalizable $\mathbb{F}$-linear maps $A : V \to V$ and $A^* : V \to V$ that each act in an irreducible tridiagonal fashion on an eigenbasis for the other one. Leonard pairs $A,A^*$ and $B,B^*$ on $V$ are said to be compatible whenever $A^* = B^*$ and $[A,A^*] = [B,B^*]$, where $[r,s] = r s - s r$. For a Leonard pair $A,A^*$ on $V$, by a companion of $A,A^*$ we mean an $\mathbb{F}$-linear map $K: V \to V$ such that $K$ is a polynomial in $A^*$ and $A-K, A^*$ is a Leonard pair on $V$. The concepts of compatibility and companion are related as follows. For compatible Leonard pairs $A,A^*$ and $B,B^*$ on $V$, define $K = A-B$. Then $K$ is a companion of $A,A^*$. For a Leonard pair $A,A^*$ on $V$ and a companion $K$ of $A,A^*$,define $B = A-K$ and $B^* = A^*$. Then $B,B^*$ is a Leonard pair on $V$ that is compatible with $A,A^*$. Let $A,A^*$ denote a Leonard pair on $V$. We find all the Leonard pairs $B, B^*$ on $V$ that are compatible with $A,A^*$.For each solution $B, B^*$, we describe the corresponding companion $K = A-B$.
Leonard配对的兼容性和同伴
本文引入了伦纳德对的相容性和伴生的概念。这些概念大致描述如下。设$\mathbb{F}$表示一个域,设$V$表示$\mathbb{F}$上一个有限正维的向量空间。$V$上的伦纳德对是$\mathbb{F}$的可对角线性映射$A: V \到V$和$A^*: V \到V$的有序对,它们在另一个的特征基上以不可约的三对角方式作用。当$A^* = B^*$和$[A,A^*] = [B,B^*]$时,$V$上的$A,A^*$和$B,B^*$被认为是兼容的,其中$[r,s] = rs - s r$。对于$V$上的伦纳德对$ a, a ^*$,通过$ a, a ^*$的伴星我们指$\mathbb{F}$-线性映射$K: V$,使得$K$是$ a ^*$和$ a -K, a ^*$是$V$上的伦纳德对。兼容性和伴侣的概念相关如下。对于$V$上的兼容伦纳德对$A,A^*$和$B,B^*$,定义$K = A-B$。那么$K$是$ a的伴星,a ^*$。对于$V$上的伦纳德对$ a, a ^*$和$ a, a ^*$的伴生$K$,定义$B = a -K$和$B^* = a ^*$。则$B,B^*$是$V$上与$ a, a ^*$兼容的伦纳德对。设$A,A^*$表示$V$上的伦纳德对。我们在$V$上找到与$A,A^*$相容的所有伦纳德对$B, B^*$。对于每个解$B, B^*$,我们描述对应的伴解$K = A-B$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信