Ultra narrow linewidth frequency reference via measurement and feedback

IF 1.3 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
D. Barberena, R. J. Lewis-Swan, A. Rey, J. K. Thompson
{"title":"Ultra narrow linewidth frequency reference via measurement and feedback","authors":"D. Barberena, R. J. Lewis-Swan, A. Rey, J. K. Thompson","doi":"10.5802/crphys.146","DOIUrl":null,"url":null,"abstract":"The generation of very narrow linewidth light sources is of great importance in modern science. One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently driving such dipoles inside an optical QED cavity. The light exiting the cavity carries information about the detuning between the driving light and the atomic transition, but is also affected by the noise originating from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths are comparable to those of the superradiant laser.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.146","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The generation of very narrow linewidth light sources is of great importance in modern science. One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently driving such dipoles inside an optical QED cavity. The light exiting the cavity carries information about the detuning between the driving light and the atomic transition, but is also affected by the noise originating from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths are comparable to those of the superradiant laser.
通过测量和反馈的超窄线宽频率参考
极窄线宽光源的产生在现代科学中具有重要意义。其中一种光源是超辐射激光,它依赖于由非相干光驱动的超长寿命偶极子的集体相互作用。本文讨论了一种在光学QED腔内相干驱动这种偶极子产生光谱纯光的不同方法。出腔的光携带着驱动光和原子跃迁之间失谐的信息,但也受到作用于联合原子-腔系统的所有退相干过程所产生的噪声的影响。我们计算这些影响,以获得频率估计和稳定的基本限制,在一系列输入光强度和原子-光相互作用强度的值范围内,在最先进的碱土原子腔实验中估计这些限制,并确定有利的操作条件。我们发现可实现的线宽与超辐射激光器相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Physique
Comptes Rendus Physique 物理-天文与天体物理
CiteScore
2.80
自引率
0.00%
发文量
13
审稿时长
17.2 weeks
期刊介绍: The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences. Its objective is to enable researchers to quickly share their work with the international scientific community. The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity. From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication. The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信