ANAPT: Additive noise analysis for persistence thresholding

IF 1.7 Q2 MATHEMATICS, APPLIED
Audun D. Myers, Firas A. Khasawneh, Brittany Terese Fasy
{"title":"ANAPT: Additive noise analysis for persistence thresholding","authors":"Audun D. Myers, Firas A. Khasawneh, Brittany Terese Fasy","doi":"10.3934/fods.2022005","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for Additive Noise Analysis for Persistence Thresholding (ANAPT) which separates significant features in the sublevel set persistence diagram of a time series based on a statistics analysis of the persistence of a noise distribution. Specifically, we consider an additive noise model and leverage the statistical analysis to provide a noise cutoff or confidence interval in the persistence diagram for the observed time series. This analysis is done for several common noise models including Gaussian, uniform, exponential, and Rayleigh distributions. ANAPT is computationally efficient, does not require any signal pre-filtering, is widely applicable, and has open-source software available. We demonstrate the functionality of ANAPT with both numerically simulated examples and an experimental data set. Additionally, we provide an efficient \\begin{document}$ \\Theta(n\\log(n)) $\\end{document} algorithm for calculating the zero-dimensional sublevel set persistence homology.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2022005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a novel method for Additive Noise Analysis for Persistence Thresholding (ANAPT) which separates significant features in the sublevel set persistence diagram of a time series based on a statistics analysis of the persistence of a noise distribution. Specifically, we consider an additive noise model and leverage the statistical analysis to provide a noise cutoff or confidence interval in the persistence diagram for the observed time series. This analysis is done for several common noise models including Gaussian, uniform, exponential, and Rayleigh distributions. ANAPT is computationally efficient, does not require any signal pre-filtering, is widely applicable, and has open-source software available. We demonstrate the functionality of ANAPT with both numerically simulated examples and an experimental data set. Additionally, we provide an efficient \begin{document}$ \Theta(n\log(n)) $\end{document} algorithm for calculating the zero-dimensional sublevel set persistence homology.
持久性阈值的加性噪声分析
We introduce a novel method for Additive Noise Analysis for Persistence Thresholding (ANAPT) which separates significant features in the sublevel set persistence diagram of a time series based on a statistics analysis of the persistence of a noise distribution. Specifically, we consider an additive noise model and leverage the statistical analysis to provide a noise cutoff or confidence interval in the persistence diagram for the observed time series. This analysis is done for several common noise models including Gaussian, uniform, exponential, and Rayleigh distributions. ANAPT is computationally efficient, does not require any signal pre-filtering, is widely applicable, and has open-source software available. We demonstrate the functionality of ANAPT with both numerically simulated examples and an experimental data set. Additionally, we provide an efficient \begin{document}$ \Theta(n\log(n)) $\end{document} algorithm for calculating the zero-dimensional sublevel set persistence homology.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信