Model Identifikasi Kata Ucapan Tuna Wicara

Nuruddin Wiranda, Agfianto Eko Putro
{"title":"Model Identifikasi Kata Ucapan Tuna Wicara","authors":"Nuruddin Wiranda, Agfianto Eko Putro","doi":"10.22146/ijeis.47609","DOIUrl":null,"url":null,"abstract":"Speech impaired is the inability of someone to speak, even though speaking ability is important in order to communicate with other people. Dealing with this as someone who has speech impairments has their own way of communicating, namely by using sign language, but not everyone understands the sign language. The MFCC and Backpropagation ANN methods are implemented on a Single Board Computer (SBC) designed to overcome speech impaired communication problems. The MFCC method is used to retrieve the features of speech impairment and the Backpropagation ANN is used for sound pattern recognition.The system was trained using 750 sound samples consisting of 5 speakers, each uttering as many as 30 repetitions of the pronunciation of words (makan, kamar, kerja, harga and lapar), then tested using 125 sound samples consisting of 5 speakers, each saying 5 repetitions of words. Training and testing of Backpropagation ANN using input coefficients generated from MFCC. The results showed that the MFCC and Backpropagation ANN methods were able to identify speech words with 60% accuracy, 40% precision and 40% sensitivity.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.47609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Speech impaired is the inability of someone to speak, even though speaking ability is important in order to communicate with other people. Dealing with this as someone who has speech impairments has their own way of communicating, namely by using sign language, but not everyone understands the sign language. The MFCC and Backpropagation ANN methods are implemented on a Single Board Computer (SBC) designed to overcome speech impaired communication problems. The MFCC method is used to retrieve the features of speech impairment and the Backpropagation ANN is used for sound pattern recognition.The system was trained using 750 sound samples consisting of 5 speakers, each uttering as many as 30 repetitions of the pronunciation of words (makan, kamar, kerja, harga and lapar), then tested using 125 sound samples consisting of 5 speakers, each saying 5 repetitions of words. Training and testing of Backpropagation ANN using input coefficients generated from MFCC. The results showed that the MFCC and Backpropagation ANN methods were able to identify speech words with 60% accuracy, 40% precision and 40% sensitivity.
语言调识别模型
语言障碍是指某人不能说话,尽管说话能力对于与他人交流很重要。有语言障碍的人有自己的交流方式,即使用手语,但不是每个人都能理解手语。为了克服言语障碍通信问题,在单板计算机上实现了MFCC和反向传播ANN方法。使用MFCC方法检索语音障碍特征,使用反向传播人工神经网络进行声音模式识别。该系统使用由5个说话者组成的750个声音样本进行训练,每个人重复多达30次的单词发音(makan, kamar, kerja, harga和lapar),然后使用由5个说话者组成的125个声音样本进行测试,每个人重复5次单词。用MFCC生成的输入系数训练和测试反向传播神经网络。结果表明,MFCC和反向传播ANN方法能够以60%的准确率、40%的精密度和40%的灵敏度识别语音单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信