Qualitative spatial reasoning with uncertain evidence using Markov logic networks

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. Duckham, J. Gabela, A. Kealy, R. Kyprianou, J. Legg, Bill Moran, Shakila Khan Rumi, Flora D. Salim, Yaguang Tao, M. Vasardani
{"title":"Qualitative spatial reasoning with uncertain evidence using Markov logic networks","authors":"M. Duckham, J. Gabela, A. Kealy, R. Kyprianou, J. Legg, Bill Moran, Shakila Khan Rumi, Flora D. Salim, Yaguang Tao, M. Vasardani","doi":"10.1080/13658816.2023.2231044","DOIUrl":null,"url":null,"abstract":"Abstract Probabilistic logics combine the ability to reason about complex scenes, with a rigorous approach to uncertainty. This paper explores the construction of probabilistic spatial logics through the combination of established qualitative spatial calculi together with Markov logic networks (MLNs). Qualitative spatial calculi provide the basis for automated representation and reasoning with complex spatial scenes; MLNs provide a rigorous basis for handling uncertainty and driving probabilistic inference. Our approach focuses specifically on the combination of an uncertain knowledge base with a certain spatial reasoning rule-base. The experiments explore how uncertain knowledge propagates through certain qualitative spatial inferences, using the specific example of reasoning with cardinal directions. The results provide a template for probabilistic qualitative spatial reasoning more generally, with applications to a wide range of common scenarios for situational awareness and automated reasoning under uncertainty.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2067 - 2100"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2231044","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Probabilistic logics combine the ability to reason about complex scenes, with a rigorous approach to uncertainty. This paper explores the construction of probabilistic spatial logics through the combination of established qualitative spatial calculi together with Markov logic networks (MLNs). Qualitative spatial calculi provide the basis for automated representation and reasoning with complex spatial scenes; MLNs provide a rigorous basis for handling uncertainty and driving probabilistic inference. Our approach focuses specifically on the combination of an uncertain knowledge base with a certain spatial reasoning rule-base. The experiments explore how uncertain knowledge propagates through certain qualitative spatial inferences, using the specific example of reasoning with cardinal directions. The results provide a template for probabilistic qualitative spatial reasoning more generally, with applications to a wide range of common scenarios for situational awareness and automated reasoning under uncertainty.
利用马尔可夫逻辑网络进行不确定证据的定性空间推理
概率逻辑结合了对复杂场景的推理能力,以及对不确定性的严格方法。本文通过将已建立的定性空间演算与马尔可夫逻辑网络相结合,探讨了概率空间逻辑的构造。定性空间演算为复杂空间场景的自动表示和推理提供了基础;mln为处理不确定性和驱动概率推理提供了严格的基础。我们的方法侧重于不确定知识库与特定空间推理规则库的结合。实验探讨了不确定性知识如何通过特定的定性空间推理传播,使用了基本方向推理的具体例子。研究结果为概率定性空间推理提供了一个更广泛的模板,可应用于各种常见场景,用于不确定情况下的情景感知和自动推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信