{"title":"Optimal cash management using impulse control","authors":"Peter Lakner, Josh Reed","doi":"10.1016/j.indag.2023.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the impulse control of Lévy processes<span><span> under the infinite horizon, discounted cost criterion. Our motivating example is the cash management problem in which a controller is charged a fixed plus proportional cost for adding to or withdrawing from his/her reserve, plus an opportunity cost for keeping any cash on hand. Our main result is to provide a verification theorem for the optimality of control band policies in this scenario. We also analyze the transient and steady-state behavior of the controlled process under control band policies and explicitly solve for an </span>optimal policy<span> in the case in which the Lévy process to be controlled is the sum of a Brownian motion with drift and a compound Poisson process with exponentially distributed jump sizes.</span></span></p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"34 5","pages":"Pages 1181-1205"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000630","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We consider the impulse control of Lévy processes under the infinite horizon, discounted cost criterion. Our motivating example is the cash management problem in which a controller is charged a fixed plus proportional cost for adding to or withdrawing from his/her reserve, plus an opportunity cost for keeping any cash on hand. Our main result is to provide a verification theorem for the optimality of control band policies in this scenario. We also analyze the transient and steady-state behavior of the controlled process under control band policies and explicitly solve for an optimal policy in the case in which the Lévy process to be controlled is the sum of a Brownian motion with drift and a compound Poisson process with exponentially distributed jump sizes.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.