Thermal Resistance by Transition Between Collective and Non-Collective Phonon Flows in Graphitic Materials

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Sangyeop Lee, Xun Li, Ruiqiang Guo
{"title":"Thermal Resistance by Transition Between Collective and Non-Collective Phonon Flows in Graphitic Materials","authors":"Sangyeop Lee, Xun Li, Ruiqiang Guo","doi":"10.1080/15567265.2019.1575497","DOIUrl":null,"url":null,"abstract":"ABSTRACT Phonons in graphitic materials exhibit strong normal scattering (N-scattering) compared to umklapp scattering (U-scattering). The strong N-scattering cause collective phonon flow, unlike the relatively common cases where U-scattering is dominant. If graphitic materials have finite size and contact with hot and cold reservoirs emitting phonons with non-collective distribution, N-scattering change the non-collective phonon flow to the collective phonon flow near the interface between graphitic material and a heat reservoir. We study the thermal resistance by N-scattering during the transition between non-collective and collective phonon flows. Our Monte Carlo solution of Peierls-Boltzmann transport equation shows that the N-scattering in graphitic materials reduce heat flux from the ballistic case by around 15%, 30%, and 40% at 100, 200, and 300 K, respectively. This is significantly larger than ~ 5% reduction of Debye crystal with similar Debye temperature (~2300 K). We associate the large reduction of heat flux by N-scattering with the non-linear dispersion and multiple phonon branches with different group velocities of graphitic materials.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"247 - 258"},"PeriodicalIF":2.7000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1575497","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1575497","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT Phonons in graphitic materials exhibit strong normal scattering (N-scattering) compared to umklapp scattering (U-scattering). The strong N-scattering cause collective phonon flow, unlike the relatively common cases where U-scattering is dominant. If graphitic materials have finite size and contact with hot and cold reservoirs emitting phonons with non-collective distribution, N-scattering change the non-collective phonon flow to the collective phonon flow near the interface between graphitic material and a heat reservoir. We study the thermal resistance by N-scattering during the transition between non-collective and collective phonon flows. Our Monte Carlo solution of Peierls-Boltzmann transport equation shows that the N-scattering in graphitic materials reduce heat flux from the ballistic case by around 15%, 30%, and 40% at 100, 200, and 300 K, respectively. This is significantly larger than ~ 5% reduction of Debye crystal with similar Debye temperature (~2300 K). We associate the large reduction of heat flux by N-scattering with the non-linear dispersion and multiple phonon branches with different group velocities of graphitic materials.
石墨材料中集体和非集体声子流之间跃迁的热阻
摘要与umklapp散射(U散射)相比,石墨材料中的声子表现出较强的法向散射(N散射)。与U散射占主导地位的相对常见的情况不同,强N散射引起集体声子流。如果石墨材料具有有限的尺寸,并且与发射具有非集体分布的声子的热库和冷库接触,则N散射将非集体声子流改变为石墨材料和热库之间界面附近的集体声子流。我们研究了在非集体和集体声子流之间转换过程中通过N散射产生的热阻。Peierls-Boltzmann输运方程的蒙特卡罗解表明,在100、200和300K下,石墨材料中的N散射分别使弹道情况下的热通量减少了约15%、30%和40%。这明显大于具有相似德拜温度(~2300K)的德拜晶体的~5%还原率。我们将N散射导致的热通量的大幅减少与石墨材料的非线性色散和不同群速度下的多个声子分支联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信