{"title":"An isoperimetric inequality of minimal hypersurfaces in spheres","authors":"Fagui Li, Niang-Shin Chen","doi":"10.2140/pjm.2023.324.143","DOIUrl":null,"url":null,"abstract":"Let $ M^n$ be a closed immersed minimal hypersurface in the unit sphere $\\mathbb{S}^{n+1}$. We establish a special isoperimetric inequality of $M^n$. As an application, if the scalar curvature of $ M^n$ is constant, then we get a uniform lower bound independent of $M^n$ for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger's isoperimetric constant and the volume of the nodal set of the height function.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let $ M^n$ be a closed immersed minimal hypersurface in the unit sphere $\mathbb{S}^{n+1}$. We establish a special isoperimetric inequality of $M^n$. As an application, if the scalar curvature of $ M^n$ is constant, then we get a uniform lower bound independent of $M^n$ for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger's isoperimetric constant and the volume of the nodal set of the height function.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.