{"title":"Identifying and Separating Pandora Moth Outbreaks and Climate from A 1500-Year Ponderosa Pine Chronology from Central Oregon","authors":"P. Clark, J. Speer, L. J. Winship","doi":"10.3959/1536-1098-73.2.113","DOIUrl":null,"url":null,"abstract":"Abstract We reconstruct pandora moth (Coloradia pandora Blake) outbreaks and climate from a 1572-year (435–2006 CE) ponderosa pine (Pinus ponderosa Dougl. ex Laws.) chronology from a lava flow in central Oregon. We took samples from 128 living trees and remnant logs and crossdated the samples using skeleton plots and COFECHA for quality control. After cutting out and removing those time periods from the chronology during which insects become the main limiting factor to growth, we examine the response of tree rings to climate. Evidence of species longevity (up to 877 years), presence of periodic pandora moth defoliations (13 total), and a significant relationship with the Palmer Drought Severity Index were observed (R2 = 0.34, p < 0.001). Suppressions related to pandora moth outbreaks were recorded back to 618 CE, with a mean return interval of 104 years. Previous-fall to current-spring PDSI was reconstructed over 1376 years (630–2006 CE), where the most prolonged drought periods were 1136–1166 CE and the Dust Bowl 1924–1941. Our research documents longevity of ponderosa pine, resilience in the presence of multiple disturbances, and demonstrates a technique to separate insect outbreak signals from climate reconstructions in long chronologies while embracing the entire signal available in tree rings.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"73 1","pages":"113 - 125"},"PeriodicalIF":1.1000,"publicationDate":"2017-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3959/1536-1098-73.2.113","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-73.2.113","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract We reconstruct pandora moth (Coloradia pandora Blake) outbreaks and climate from a 1572-year (435–2006 CE) ponderosa pine (Pinus ponderosa Dougl. ex Laws.) chronology from a lava flow in central Oregon. We took samples from 128 living trees and remnant logs and crossdated the samples using skeleton plots and COFECHA for quality control. After cutting out and removing those time periods from the chronology during which insects become the main limiting factor to growth, we examine the response of tree rings to climate. Evidence of species longevity (up to 877 years), presence of periodic pandora moth defoliations (13 total), and a significant relationship with the Palmer Drought Severity Index were observed (R2 = 0.34, p < 0.001). Suppressions related to pandora moth outbreaks were recorded back to 618 CE, with a mean return interval of 104 years. Previous-fall to current-spring PDSI was reconstructed over 1376 years (630–2006 CE), where the most prolonged drought periods were 1136–1166 CE and the Dust Bowl 1924–1941. Our research documents longevity of ponderosa pine, resilience in the presence of multiple disturbances, and demonstrates a technique to separate insect outbreak signals from climate reconstructions in long chronologies while embracing the entire signal available in tree rings.
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.