The Moore-Penrose inverse of the distance matrix of a helm graph

Pub Date : 2022-08-23 DOI:10.13001/ela.2023.7465
I. Jeyaraman, T. Divyadevi, R. Azhagendran
{"title":"The Moore-Penrose inverse of the distance matrix of a helm graph","authors":"I. Jeyaraman, T. Divyadevi, R. Azhagendran","doi":"10.13001/ela.2023.7465","DOIUrl":null,"url":null,"abstract":"In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for the distance matrix $D(H_n)$ of a helm graph $H_n$ to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear Algebra Appl. 621:86-104, 2021), for $D(H_n)$ when $n$ is even. Further, we derive a formula for the Moore-Penrose inverse of singular $D(H_n)$ that is analogous to the formula for $D(H_n)^{-1}$. Precisely, if $n$ is odd, we find a symmetric positive semi-definite Laplacian-like matrix $L$ of order $2n-1$ and a vector $\\mathbf{w}\\in \\mathbb{R}^{2n-1}$ such that\\begin{eqnarray*}D(H_n)^{\\dagger} = -\\frac{1}{2}L +\\frac{4}{3(n-1)}\\mathbf{w}\\mathbf{w^{\\prime}},\\end{eqnarray*}where the rank of $L$ is $2n-3$. We also investigate the inertia of $D(H_n)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we give necessary and sufficient conditions for a real symmetric matrix and, in particular, for the distance matrix $D(H_n)$ of a helm graph $H_n$ to have their Moore-Penrose inverses as the sum of a symmetric Laplacian-like matrix and a rank-one matrix. As a consequence, we present a short proof of the inverse formula, given by Goel (Linear Algebra Appl. 621:86-104, 2021), for $D(H_n)$ when $n$ is even. Further, we derive a formula for the Moore-Penrose inverse of singular $D(H_n)$ that is analogous to the formula for $D(H_n)^{-1}$. Precisely, if $n$ is odd, we find a symmetric positive semi-definite Laplacian-like matrix $L$ of order $2n-1$ and a vector $\mathbf{w}\in \mathbb{R}^{2n-1}$ such that\begin{eqnarray*}D(H_n)^{\dagger} = -\frac{1}{2}L +\frac{4}{3(n-1)}\mathbf{w}\mathbf{w^{\prime}},\end{eqnarray*}where the rank of $L$ is $2n-3$. We also investigate the inertia of $D(H_n)$.
分享
查看原文
helm图距离矩阵的Moore-Penrose逆
本文给出了实对称矩阵,特别是helm图$H_n$的距离矩阵$D(H_n)$的Moore—Penrose逆为对称类拉普拉斯矩阵和秩一矩阵之和的充要条件。因此,当$n$为偶数时,我们给出了Goel(线性代数应用621:8-1042021)给出的$D(H_n)$的逆公式的简短证明。此外,我们还导出了奇异$D(H_n)$的Moore-Penrose逆的一个公式,该公式类似于$D(H_2)^{-1}$的公式。精确地说,如果$n$是奇数,我们发现了一个对称的正半定类拉普拉斯矩阵$L$,其阶为$2n-1$,并且向量$\mathbf{w}\in\mathbb{R}^{2n-1}$使得\ begin{eqnarray*}D(H_n)^{\dagger}=-\frac{1}{2}L+\frac{4}{3(n-1)}\mathbf{w}\mathbf{w^{\prime}},\end{eqnarray*},其中$L$的秩为$2n-3$。我们还研究了$D(H_n)$的惯性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信