A virtual knot whose virtual unknotting number equals one and a sequence of $n$-writhes

IF 0.7 4区 数学 Q2 MATHEMATICS
Y. Ohyama, Migiwa Sakurai
{"title":"A virtual knot whose virtual unknotting number equals one and a sequence of $n$-writhes","authors":"Y. Ohyama, Migiwa Sakurai","doi":"10.2969/JMSJ/84478447","DOIUrl":null,"url":null,"abstract":"Satoh and Taniguchi introduced the n-writhe Jn for each non-zero integer n, which is an integer invariant for virtual knots. The sequence of n-writhes {Jn}n̸=0 of a virtual knot K satisfies ∑ n̸=0 nJn(K) = 0. They showed that for any sequence of integers {cn}n̸=0 with ∑ n̸=0 ncn = 0, there exists a virtual knot K with Jn(K) = cn for any n ̸= 0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by uv . In this paper, we show that if {cn}n̸=0 is a sequence of integers with ∑ n̸=0 ncn = 0, then there exists a virtual knot K such that uv(K) = 1 and Jn(K) = cn for any n ̸= 0.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84478447","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Satoh and Taniguchi introduced the n-writhe Jn for each non-zero integer n, which is an integer invariant for virtual knots. The sequence of n-writhes {Jn}n̸=0 of a virtual knot K satisfies ∑ n̸=0 nJn(K) = 0. They showed that for any sequence of integers {cn}n̸=0 with ∑ n̸=0 ncn = 0, there exists a virtual knot K with Jn(K) = cn for any n ̸= 0. It is obvious that the virtualization of a real crossing is an unknotting operation for virtual knots. The unknotting number by the virtualization is called the virtual unknotting number and is denoted by uv . In this paper, we show that if {cn}n̸=0 is a sequence of integers with ∑ n̸=0 ncn = 0, then there exists a virtual knot K such that uv(K) = 1 and Jn(K) = cn for any n ̸= 0.
一种虚拟结,其虚拟解结数等于1,并有一个$n$-缠绕的序列
Satoh和Taniguchi为每个非零整数n引入了n-扭体Jn,它是虚拟结的整数不变量。n-扭体的序列{Jn}n虚拟结K的∑n̸=0 nJn(K)=0。他们证明,对于任何整数序列{cn}n∑n̸=0 ncn=0,对于任意n \824=0,存在Jn(K)=cn的虚拟结K。很明显,真实交叉的虚拟化对于虚拟节点来说是一种未知的操作。虚拟化的unknoting数称为虚拟unknotiing数,用uv表示。在本文中,我们证明了如果{cn}n̸=0是一个∑n=0ncn=0的整数序列,则存在一个虚拟结K,使得对于任何n=0,uv(K)=1和Jn(K)=cn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信