Global-in-time mean-field convergence for singular Riesz-type diffusive flows

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
M. Rosenzweig, S. Serfaty
{"title":"Global-in-time mean-field convergence for singular Riesz-type diffusive flows","authors":"M. Rosenzweig, S. Serfaty","doi":"10.1214/22-aap1833","DOIUrl":null,"url":null,"abstract":"We consider the mean-field limit of systems of particles with singular interactions of the type $-\\log|x|$ or $|x|^{-s}$, with $0<s<d-2$, and with an additive noise in dimensions $d \\geq 3$. We use a modulated-energy approach to prove a quantitative convergence rate to the solution of the corresponding limiting PDE. When $s>0$, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on $\\mathbb{R}^d$. The proof relies on an adaptation of an argument of Carlen-Loss to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592 making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1833","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 22

Abstract

We consider the mean-field limit of systems of particles with singular interactions of the type $-\log|x|$ or $|x|^{-s}$, with $00$, the convergence is global in time, and it is the first such result valid for both conservative and gradient flows in a singular setting on $\mathbb{R}^d$. The proof relies on an adaptation of an argument of Carlen-Loss to show a decay rate of the solution to the limiting equation, and on an improvement of the modulated-energy method developed in arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592 making it so that all prefactors in the time derivative of the modulated energy are controlled by a decaying bound on the limiting solution.
奇异riesz型扩散流的全局实时平均场收敛性
考虑了具有$-\log|x|$或$|x|^{-s}$奇异相互作用的粒子系统的平均场极限,在$00$下,收敛在时间上是全局的,这是第一个在$\mathbb{R}^d$上的奇异设置下保守流和梯度流都有效的结果。该证明依赖于对Carlen-Loss的一个论证的改编,以显示极限方程解的衰减率,并依赖于对arXiv:1508.03377, arXiv:1803.08345, arXiv:2107.02592中提出的调制能量方法的改进,使得调制能量的时间导数中的所有前因子都由极限解的衰减界控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信