Boundary quasi-analyticity and a Phragmén–Lindelöf type theorem in classes of functions of bounded type in tubular domains

IF 0.7 4区 数学 Q2 MATHEMATICS
F. Shamoyan
{"title":"Boundary quasi-analyticity and a Phragmén–Lindelöf type theorem in classes of functions of bounded type in tubular domains","authors":"F. Shamoyan","doi":"10.1090/spmj/1741","DOIUrl":null,"url":null,"abstract":"<p>A complete description is obtained of the Carleman classes on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that every function of bounded type in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Superscript n\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> whose boundary values belong to the class under study is in fact a member of the corresponding Carleman class in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Superscript n Baseline union double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo>∪<!-- ∪ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n_+\\cup \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Also a refinement of the classical Salinas theorem is obtained, namely: under the conditions of the Salinas theorem on quasi-analyticity, instead of the assumption that a function belongs to the Carleman class in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Superscript n Baseline union double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:mo>∪<!-- ∪ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n_+\\cup \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> it suffices that its boundary values on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> belong to the Carleman class, and the function is of bounded type in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Superscript n\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^n_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1741","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A complete description is obtained of the Carleman classes on R n \mathbb {R}^n such that every function of bounded type in C + n \mathbb {C}^n_+ whose boundary values belong to the class under study is in fact a member of the corresponding Carleman class in C + n R n \mathbb {C}^n_+\cup \mathbb {R}^n . Also a refinement of the classical Salinas theorem is obtained, namely: under the conditions of the Salinas theorem on quasi-analyticity, instead of the assumption that a function belongs to the Carleman class in C + n R n \mathbb {C}^n_+\cup \mathbb {R}^n it suffices that its boundary values on R n \mathbb {R}^n belong to the Carleman class, and the function is of bounded type in  C + n \mathbb {C}^n_+ .

管状域中有界型函数类的边界拟分析性和Phragmén–Lindelöf型定理
得到了Rn\mathbb{R}^n上Carleman类的一个完整描述,使得C+n\mathb{C}^n_+中的每一个有界类型的函数,其边值属于所研究的类,实际上都是C++中相应Carleman族的一员n∈Rn\mathbb{C}^n_+\cup\mathbb{R}^n。得到了经典Salinas定理的一个改进:在Salinas理论关于拟分析性的条件下,不是假设一个函数属于C+nõRn\mathbb{C}^n_+\cup\mathbb{R}^n中的Carleman类,并且该函数在C+n\mathb{C}^n_+中是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信