Implications for herbal polypharmacy: coumarin-induced hepatotoxicity increased through common herbal phytochemicals astragaloside IV and atractylenolide I
{"title":"Implications for herbal polypharmacy: coumarin-induced hepatotoxicity increased through common herbal phytochemicals astragaloside IV and atractylenolide I","authors":"Susan M. Britza, I. Musgrave, R. Byard","doi":"10.1080/15376516.2022.2057267","DOIUrl":null,"url":null,"abstract":"Abstract Hepatotoxicity is a well-known adverse effect of many substances, with toxicity often resulting from interactions of drugs with other drug-like substances. With the increased availability of complementary and alternative medicines, including herbal medicines, the likelihood of adverse interactions between drugs and drug-like substances in herbs increases. However, the impact of potential herb-herb interactions is little understood. To assess the potential of two cytochrome P450 enzyme modulating phytochemicals common to many herbal medicines, atractylenolide I (ATR-I) and astragaloside IV (AST-IV), to interact with coumarin, another phytochemical common in many foods, a hepatocyte function model with a liver carcinoma cell line, HepG2, was exposed to these agents. To determine the effects of cytochrome P450 modulation by these phytochemicals certain cells were induced with rifampicin to induce cytochrome P450. Increasing concentrations of ATR-I combined with a fixed, nontoxic concentration of coumarin (200 µM), demonstrated significant additive interactions. 300 µM ATR-I produced a 31% reduction in cell viability (p < 0.01) with coumarin in rifampicin uninduced cells. In rifampicin-induced cells, ATR-I (100–300 µM) produced a significant reduction in cell viability (p < 0.01) with coumarin (200 µM). AST-IV with fixed coumarin (200 µM) showed 27% toxicity at 300 µM AST-IV in rifampicin uninduced cells (p < 0.05) and 30% toxicity in rifampicin induced cells (p < 0.05). However, when fixed coumarin and AST-IV were combined with increasing concentrations of ATR-I no further significant increase in toxicity was observed (p > 0.05). These results demonstrate the potential toxic interactive capabilities of common traditional Chinese herbal medicine phytochemicals and underline the potential importance of coumarin-mediated toxicity.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"32 1","pages":"606 - 615"},"PeriodicalIF":2.8000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2057267","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Hepatotoxicity is a well-known adverse effect of many substances, with toxicity often resulting from interactions of drugs with other drug-like substances. With the increased availability of complementary and alternative medicines, including herbal medicines, the likelihood of adverse interactions between drugs and drug-like substances in herbs increases. However, the impact of potential herb-herb interactions is little understood. To assess the potential of two cytochrome P450 enzyme modulating phytochemicals common to many herbal medicines, atractylenolide I (ATR-I) and astragaloside IV (AST-IV), to interact with coumarin, another phytochemical common in many foods, a hepatocyte function model with a liver carcinoma cell line, HepG2, was exposed to these agents. To determine the effects of cytochrome P450 modulation by these phytochemicals certain cells were induced with rifampicin to induce cytochrome P450. Increasing concentrations of ATR-I combined with a fixed, nontoxic concentration of coumarin (200 µM), demonstrated significant additive interactions. 300 µM ATR-I produced a 31% reduction in cell viability (p < 0.01) with coumarin in rifampicin uninduced cells. In rifampicin-induced cells, ATR-I (100–300 µM) produced a significant reduction in cell viability (p < 0.01) with coumarin (200 µM). AST-IV with fixed coumarin (200 µM) showed 27% toxicity at 300 µM AST-IV in rifampicin uninduced cells (p < 0.05) and 30% toxicity in rifampicin induced cells (p < 0.05). However, when fixed coumarin and AST-IV were combined with increasing concentrations of ATR-I no further significant increase in toxicity was observed (p > 0.05). These results demonstrate the potential toxic interactive capabilities of common traditional Chinese herbal medicine phytochemicals and underline the potential importance of coumarin-mediated toxicity.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.