Noorlindawaty Md Jizat, Yoshihide Yamada, Z. Yusoff
{"title":"Multibeam Array Antenna with Compact Size Butler Matrix for Millimeter-Wave Application","authors":"Noorlindawaty Md Jizat, Yoshihide Yamada, Z. Yusoff","doi":"10.30880/ijie.2023.15.03.014","DOIUrl":null,"url":null,"abstract":"New radio wave technologies of millimeter-wave (mmWave), compact cell size, and multi beam base station are introduced with the recent development of the 5G mobile system. The Butler Matrix (BM) feed circuit is the most preferable candidate for the 5G mobile system since it can achieve multi beam radiationpatterns at the array antenna, provide structural compactness and produce good multi beams.The BM circuit is typically built on a single dielectric substrate. However, in this single-substrate structure, the micro strip line connecting several circuit elements in the BM spans over a large area, resulting in significant feeding loss in the millimeter frequency band.In this study, a compact size circuit configuration of BM is proposed, where the original single-substrate structure is modified into a two-substrate stacking structure. The via-hole is designed to connect the two substrates with minimal path loss. The BM is built for the 28 GHz band with four inputs and four outputs.The phase delay is optimized using via-hole to produce the phase difference of ±45º and ±135º. The coupling for the hybrid is -3 dB, while the transmission coefficient of -6 ± 3 is achieved from the BM structure and, the return loss (Sii) for both input and output ports are less than -10 dB. The two-substrate BM is combined with the rectangular patch antenna and the via-hole patch antenna in a planar configuration of 0.5 λ0spacing to obtain the radiation patterns. When the Port 1 through Port 4 of the BM are fed, four beams are created, with peak gains of 11.2 dBi, 9.87 dBi, 10.2 dBi, and 11.7 dBi, respectively, towards +16°, -35°, +39°, and -12°. The analysis includes the radiation performance from the ideal value and from the BM input. Three-dimensional representations of good multibeam radiation patterns are obtained after each input signal of the BM is fed","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.03.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
New radio wave technologies of millimeter-wave (mmWave), compact cell size, and multi beam base station are introduced with the recent development of the 5G mobile system. The Butler Matrix (BM) feed circuit is the most preferable candidate for the 5G mobile system since it can achieve multi beam radiationpatterns at the array antenna, provide structural compactness and produce good multi beams.The BM circuit is typically built on a single dielectric substrate. However, in this single-substrate structure, the micro strip line connecting several circuit elements in the BM spans over a large area, resulting in significant feeding loss in the millimeter frequency band.In this study, a compact size circuit configuration of BM is proposed, where the original single-substrate structure is modified into a two-substrate stacking structure. The via-hole is designed to connect the two substrates with minimal path loss. The BM is built for the 28 GHz band with four inputs and four outputs.The phase delay is optimized using via-hole to produce the phase difference of ±45º and ±135º. The coupling for the hybrid is -3 dB, while the transmission coefficient of -6 ± 3 is achieved from the BM structure and, the return loss (Sii) for both input and output ports are less than -10 dB. The two-substrate BM is combined with the rectangular patch antenna and the via-hole patch antenna in a planar configuration of 0.5 λ0spacing to obtain the radiation patterns. When the Port 1 through Port 4 of the BM are fed, four beams are created, with peak gains of 11.2 dBi, 9.87 dBi, 10.2 dBi, and 11.7 dBi, respectively, towards +16°, -35°, +39°, and -12°. The analysis includes the radiation performance from the ideal value and from the BM input. Three-dimensional representations of good multibeam radiation patterns are obtained after each input signal of the BM is fed
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.