Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method

IF 2.4 Q3 ENERGY & FUELS
Tolossa Kebede Tulu, S. M. Atnaw, Robera Daba Bededa, Demeke Girma Wakshume, V. Ancha
{"title":"Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method","authors":"Tolossa Kebede Tulu, S. M. Atnaw, Robera Daba Bededa, Demeke Girma Wakshume, V. Ancha","doi":"10.14710/ijred.2022.45179","DOIUrl":null,"url":null,"abstract":"This paper presents the kinetic modeling of biomass gasification in bubbling fluidized bed (BFB) gasifiers and optimization methods to maximize gasification products. The kinetic model was developed based on two-phase fluidization theory. In this work, reaction kinetics, hydrodynamic conditions, convective and diffusion effect, and the thermal cracking of tar kinetics were considered in the model. The model was coded in MATLAB and simulated. The result depicted good agreement with experimental work in literature. The sensitivity analysis was carried out and the effect of temperature ranging from 650  to 850  and steam to biomass ratio (S/B) ranging from 0.1 to 2 was investigated. The result showed that an increase in temperature promoted H2 production from 18.73 % to 36.87 %, reduced that of CO from 39.97 % to 34.2 %, and CH4 from 18.01 % to 11.65 %. Furthermore, surface response was constructed from the regression model and the mutual effect of temperature and S/B on gasification products and heating value was investigated. In addition, the desirability function was employed to optimize gasification product and heating value. The maximum gasification product yield was obtained at 827.9  and 0.1 S/B. The response predicted by desirability function at these optimum operational conditions was 30.1 %, 44.1 %, 13.2 %, 12.9 %, 14.035 MJ/Nm3, and 14.5 MJ/Nm3 for H2, CO, CO2, CH4, LHV, and HHV, respectively. Kinetic modeling of the biomass gasification in BFB process is still under development, which considers the diffusion effect, tar cracking, reaction kinetics, and hydrodynamic behavior. Moreover, the large number of previous studies gave priority to a single parameter investigation. However, this investigation can be extended to various parameters analysis simultaneously, which would give solid information on system performance analysis.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2022.45179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents the kinetic modeling of biomass gasification in bubbling fluidized bed (BFB) gasifiers and optimization methods to maximize gasification products. The kinetic model was developed based on two-phase fluidization theory. In this work, reaction kinetics, hydrodynamic conditions, convective and diffusion effect, and the thermal cracking of tar kinetics were considered in the model. The model was coded in MATLAB and simulated. The result depicted good agreement with experimental work in literature. The sensitivity analysis was carried out and the effect of temperature ranging from 650  to 850  and steam to biomass ratio (S/B) ranging from 0.1 to 2 was investigated. The result showed that an increase in temperature promoted H2 production from 18.73 % to 36.87 %, reduced that of CO from 39.97 % to 34.2 %, and CH4 from 18.01 % to 11.65 %. Furthermore, surface response was constructed from the regression model and the mutual effect of temperature and S/B on gasification products and heating value was investigated. In addition, the desirability function was employed to optimize gasification product and heating value. The maximum gasification product yield was obtained at 827.9  and 0.1 S/B. The response predicted by desirability function at these optimum operational conditions was 30.1 %, 44.1 %, 13.2 %, 12.9 %, 14.035 MJ/Nm3, and 14.5 MJ/Nm3 for H2, CO, CO2, CH4, LHV, and HHV, respectively. Kinetic modeling of the biomass gasification in BFB process is still under development, which considers the diffusion effect, tar cracking, reaction kinetics, and hydrodynamic behavior. Moreover, the large number of previous studies gave priority to a single parameter investigation. However, this investigation can be extended to various parameters analysis simultaneously, which would give solid information on system performance analysis.
基于响应面法的生物质鼓泡流化床气化动力学建模与优化
本文介绍了鼓泡流化床(BFB)气化器中生物质气化的动力学模型以及最大化气化产物的优化方法。动力学模型是基于两相流化理论建立的。在这项工作中,反应动力学,流体动力学条件,对流和扩散效应,以及焦油的热裂解动力学被考虑在模型中。该模型在MATLAB中进行了编码和仿真。实验结果与文献中的实验结果基本一致。进行了灵敏度分析,并研究了温度在650至850范围内和蒸汽与生物质比(S/B)在0.1至2范围内的影响。结果表明,温度的升高使H2的产量从18.73%提高到36.87%,CO的产量从39.97%降低到34.2%,CH4的产量从18.01%降低到11.65%。此外,从回归模型中构建了表面响应,并研究了温度和S/B对气化产物和热值的相互影响。此外,利用期望函数对气化产物和热值进行了优化。气化产物的最大产率为827.9和0.1S/B。在这些最佳操作条件下,期望函数预测的H2、CO、CO2、CH4、LHV和HHV的响应分别为30.1%、44.1%、13.2%、12.9%、14.035MJ/Nm3和14.5MJ/Nm3。BFB过程中生物质气化的动力学模型仍在发展中,该模型考虑了扩散效应、焦油裂化、反应动力学和流体动力学行为。此外,先前的大量研究优先考虑单一参数调查。然而,该研究可以同时扩展到各种参数分析,这将为系统性能分析提供可靠的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信