{"title":"Detection of Bovine Species on Image Using Machine Learning Classifiers","authors":"Ali Tezcan Sarizeybek, A. Işık","doi":"10.35378/gujs.1203685","DOIUrl":null,"url":null,"abstract":"There are too many cattle in the world and too many breeds of cattle. For someone who is new to cattle breeding, it may be difficult to tell which species their cattle are. In some cases, an experienced person may not understand the breeds of two cattle that are similar in appearance. In this study, the aim is to classify the cattle species with image processing methods and mobile applications written in Flutter and TensorFlow Lite. For classifying breeds, The VGG-16 algorithm was used for feature extraction. XGBoost and Random Forest algorithms were used for classification and the combined versions of the two methods were compared. In addition, SMOTE algorithm and image augmentation algorithms were used to prevent the imbalance of the dataset, the performance results of the combined versions of the two methods were compared. Images of different cattle species from different farms were obtained and the dataset was prepared, then trained image classification models and tested the trained models. As a result of performance tests, it’s obtained that the best model is VGG16+Random Forest+SMOTE+Augmentation with 88.77% accuracy result for this study. In the mobile application, first the cattle is detected with a pre-trained object detection model, and then the breed classification of the cattle on the image is made with image classification model.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1203685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There are too many cattle in the world and too many breeds of cattle. For someone who is new to cattle breeding, it may be difficult to tell which species their cattle are. In some cases, an experienced person may not understand the breeds of two cattle that are similar in appearance. In this study, the aim is to classify the cattle species with image processing methods and mobile applications written in Flutter and TensorFlow Lite. For classifying breeds, The VGG-16 algorithm was used for feature extraction. XGBoost and Random Forest algorithms were used for classification and the combined versions of the two methods were compared. In addition, SMOTE algorithm and image augmentation algorithms were used to prevent the imbalance of the dataset, the performance results of the combined versions of the two methods were compared. Images of different cattle species from different farms were obtained and the dataset was prepared, then trained image classification models and tested the trained models. As a result of performance tests, it’s obtained that the best model is VGG16+Random Forest+SMOTE+Augmentation with 88.77% accuracy result for this study. In the mobile application, first the cattle is detected with a pre-trained object detection model, and then the breed classification of the cattle on the image is made with image classification model.
期刊介绍:
The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.