A rank $2$ Dijkgraaf–Moore–Verlinde–Verlinde formula

IF 1.2 3区 数学 Q1 MATHEMATICS
L. Gottsche, M. Kool
{"title":"A rank $2$ Dijkgraaf–Moore–Verlinde–Verlinde formula","authors":"L. Gottsche, M. Kool","doi":"10.4310/CNTP.2019.V13.N1.A6","DOIUrl":null,"url":null,"abstract":"We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $\\chi_{10}$ and Borcherds type lifts of three quasi-Jacobi forms which are all related to the Weierstrass elliptic function. We also conjecture that the generating function of virtual cobordism classes of these moduli spaces depends only on $\\chi(\\mathcal{O}_S)$ and $K_S^2$ via two universal functions, one of which is determined by the cobordism classes of Hilbert schemes of points on $K3$. We present generalizations of these conjectures, e.g. to arbitrary surfaces with $p_g>0$ and $b_1=0$. \nWe use a result of J. Shen to express the virtual cobordism class in terms of descendent Donaldson invariants. In a prequel we used T. Mochizuki's formula, universality, and toric calculations to compute such Donaldson invariants in the setting of virtual $\\chi_y$-genera. Similar techniques allow us to verify our new conjectures in many cases.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N1.A6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

Abstract

We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $\chi_{10}$ and Borcherds type lifts of three quasi-Jacobi forms which are all related to the Weierstrass elliptic function. We also conjecture that the generating function of virtual cobordism classes of these moduli spaces depends only on $\chi(\mathcal{O}_S)$ and $K_S^2$ via two universal functions, one of which is determined by the cobordism classes of Hilbert schemes of points on $K3$. We present generalizations of these conjectures, e.g. to arbitrary surfaces with $p_g>0$ and $b_1=0$. We use a result of J. Shen to express the virtual cobordism class in terms of descendent Donaldson invariants. In a prequel we used T. Mochizuki's formula, universality, and toric calculations to compute such Donaldson invariants in the setting of virtual $\chi_y$-genera. Similar techniques allow us to verify our new conjectures in many cases.
秩$2$ Dijkgraaf-Moore-Verlinde-Verlinde公式
我们猜想了一般类型的极小曲面$S$上秩为2的槽的模空间的虚椭圆属的一个公式。我们用三个拟Jacobi形式的Igusa尖点形式$\chi_{10}$和Borcherds型提升来表达我们的猜想,这三个形式都与Weierstrass椭圆函数有关。我们还推测这些模空间的虚共基类的生成函数仅依赖于$\chi(\mathcal{O}_S)$和$K_S^2$通过两个通用函数,其中一个由$K3$上的点的Hilbert方案的共序类确定。我们给出了这些猜想的推广,例如,对于$p_g>0$和$b_1=0$的任意曲面。我们使用J.Shen的一个结果用派生的Donaldson不变量来表示虚拟共基类。在前传中,我们使用T.Mochizuki的公式、普适性和复曲面计算来计算虚拟$\chi_y$-属中的唐纳森不变量。类似的技术使我们能够在许多情况下验证我们的新猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信