Saijun Chen, Qi Liu, Z. Yang, F. Guo, Liuping Chen, Zhigang Zhang, Zhongfeng Tang
{"title":"Corrosion behaviours of Ni-Mo-Cr alloy and 316 stainless steel in molten NaCl-KCl-AlCl3 salts at high temperature","authors":"Saijun Chen, Qi Liu, Z. Yang, F. Guo, Liuping Chen, Zhigang Zhang, Zhongfeng Tang","doi":"10.1080/1478422X.2022.2148855","DOIUrl":null,"url":null,"abstract":"ABSTRACT The corrosion behaviours of Ni-Mo-Cr alloy and 316 stainless steel samples after immersing in NaCl-KCl-AlCl3 salt at 400.0°C for 168 h were investigated. The surface of Ni-Mo-Cr alloy basically kept its pre-corrosion morphology, with only a few corrosion pits. While NaCl-KCl-AlCl3 salt had stronger corrosivity to 316SS. After corrosion, the grain boundary of the surface of 316SS alloy was clearly visible, and the Fe and Cr atoms on the surface of 316SS were selectively corroded, leaving a Ni- rich layer of about 6.5 µm on the outmost surface of 316SS. At the temperature of 400.0°C, the corrosion resistance of Ni-Mo-Cr alloy to molten NaCl-KCl-AlCl3 salt was better than that of 316SS.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"103 - 107"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2148855","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The corrosion behaviours of Ni-Mo-Cr alloy and 316 stainless steel samples after immersing in NaCl-KCl-AlCl3 salt at 400.0°C for 168 h were investigated. The surface of Ni-Mo-Cr alloy basically kept its pre-corrosion morphology, with only a few corrosion pits. While NaCl-KCl-AlCl3 salt had stronger corrosivity to 316SS. After corrosion, the grain boundary of the surface of 316SS alloy was clearly visible, and the Fe and Cr atoms on the surface of 316SS were selectively corroded, leaving a Ni- rich layer of about 6.5 µm on the outmost surface of 316SS. At the temperature of 400.0°C, the corrosion resistance of Ni-Mo-Cr alloy to molten NaCl-KCl-AlCl3 salt was better than that of 316SS.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.