L. Rodríguez-Tembleque, F. García-Sánchez, A. Sáez
{"title":"Crack Surface Frictional Contact Modeling in Fractured Fiber-Reinforced Composites","authors":"L. Rodríguez-Tembleque, F. García-Sánchez, A. Sáez","doi":"10.1142/S1756973718410056","DOIUrl":null,"url":null,"abstract":"A robust boundary element numerical scheme is presented to study crack-face frictional contact in cracked fiber reinforced composite materials. The dual boundary element method is considered for modeling fracture mechanics on these materials. The formulation is based on contact operators over the augmented Lagrangian to enforce contact constraints on the crack surface. Moreover, it considers a Halpin–Tsai macro model for fiber reinforced composite materials which makes it possible to take into account the influence of micromechanical aspects such as: the fibers’ orientation, the fiber’s aspect ratio or the fiber’s volume fraction, estimating the mechanical properties of these composite materials from the known values of the fiber and the matrix. After solving a crack face frictional contact benchmark problem, the capabilities of this methodology are illustrated by studying the influence of not only these micromechanical aspects but also crack face frictional contact conditions on a fractured carbon fiber-reinforced polymer under compression.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718410056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973718410056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A robust boundary element numerical scheme is presented to study crack-face frictional contact in cracked fiber reinforced composite materials. The dual boundary element method is considered for modeling fracture mechanics on these materials. The formulation is based on contact operators over the augmented Lagrangian to enforce contact constraints on the crack surface. Moreover, it considers a Halpin–Tsai macro model for fiber reinforced composite materials which makes it possible to take into account the influence of micromechanical aspects such as: the fibers’ orientation, the fiber’s aspect ratio or the fiber’s volume fraction, estimating the mechanical properties of these composite materials from the known values of the fiber and the matrix. After solving a crack face frictional contact benchmark problem, the capabilities of this methodology are illustrated by studying the influence of not only these micromechanical aspects but also crack face frictional contact conditions on a fractured carbon fiber-reinforced polymer under compression.