Multipliers and operator space structure of weak product spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Raphael Clouatre, Michael Hartz
{"title":"Multipliers and operator space structure of weak product spaces","authors":"Raphael Clouatre, Michael Hartz","doi":"10.2140/apde.2021.14.1905","DOIUrl":null,"url":null,"abstract":"In the theory of reproducing kernel Hilbert spaces, weak product spaces generalize the notion of the Hardy space $H^1$. For complete Nevanlinna-Pick spaces $\\mathcal H$, we characterize all multipliers of the weak product space $\\mathcal H \\odot \\mathcal H$. In particular, we show that if $\\mathcal H$ has the so-called column-row property, then the multipliers of $\\mathcal H$ and of $\\mathcal H \\odot \\mathcal H$ coincide. This result applies in particular to the classical Dirichlet space and to the Drury-Arveson space on a finite dimensional ball. As a key device, we exhibit a natural operator space structure on $\\mathcal H \\odot \\mathcal H$, which enables the use of dilations of completely bounded maps.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.1905","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

In the theory of reproducing kernel Hilbert spaces, weak product spaces generalize the notion of the Hardy space $H^1$. For complete Nevanlinna-Pick spaces $\mathcal H$, we characterize all multipliers of the weak product space $\mathcal H \odot \mathcal H$. In particular, we show that if $\mathcal H$ has the so-called column-row property, then the multipliers of $\mathcal H$ and of $\mathcal H \odot \mathcal H$ coincide. This result applies in particular to the classical Dirichlet space and to the Drury-Arveson space on a finite dimensional ball. As a key device, we exhibit a natural operator space structure on $\mathcal H \odot \mathcal H$, which enables the use of dilations of completely bounded maps.
弱积空间的乘子与算子空间结构
在重生成核Hilbert空间理论中,弱积空间推广了Hardy空间$H^1$的概念。对于完备的Nevanlinna Pick空间$\mathcal H$,我们刻画了弱积空间$\math cal H\odot\mathcal H$的所有乘子。特别地,我们证明了如果$\mathcal H$具有所谓的列-行属性,那么$\mathical H$和$\mathcalH\odot\mathcal H$的乘数重合。这个结果特别适用于有限维球上的经典Dirichlet空间和Drury Arveson空间。作为一个关键装置,我们在$\mathcal H\odot\mathcal H$上展示了一个自然算子空间结构,它使得能够使用完全有界映射的扩张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信