Clustering multivariate time series using energy distance

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Richard A. Davis, Leon Fernandes, Konstantinos Fokianos
{"title":"Clustering multivariate time series using energy distance","authors":"Richard A. Davis,&nbsp;Leon Fernandes,&nbsp;Konstantinos Fokianos","doi":"10.1111/jtsa.12688","DOIUrl":null,"url":null,"abstract":"<p>A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Székely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure the separation between the finite-dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally, the methodology is applied to two examples; one involves the GDP of selected countries and the other is the population size of various states in the U.S.A. in the years 1900–1999.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12688","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Székely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure the separation between the finite-dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally, the methodology is applied to two examples; one involves the GDP of selected countries and the other is the population size of various states in the U.S.A. in the years 1900–1999.

利用能量距离对多变量时间序列进行聚类
提出了一种新的方法,用于使用Székely和Rizzo(2013)中定义的能量距离对多变量时间序列数据进行聚类。具体而言,使用能量距离统计量形成相异矩阵,以测量分量时间序列的有限维分布之间的间隔。一旦计算出成对相异度矩阵,就应用层次聚类方法来获得树状图。该过程是完全非参数的,因为在不进行任何模型假设的情况下直接计算平稳分布之间的相异性。为了证明这一过程的合理性,导出了一般平稳和遍历时间序列能量距离估计的渐近性质。该方法在线性或非线性的各种分量时间序列的仿真研究中得到了说明。最后,将该方法应用于两个实例;一个涉及选定国家的国内生产总值,另一个是1900年至1999年美国各州的人口规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信