Descriptores espacio-frecuencia para identificación automática de patrones de textura en productos textiles utilizando aprendizaje supervisado

Arley Bejarano Martínez, Andrés Felipe Calvo Salcedo, Carlos Alberto Henao Baena
{"title":"Descriptores espacio-frecuencia para identificación automática de patrones de textura en productos textiles utilizando aprendizaje supervisado","authors":"Arley Bejarano Martínez, Andrés Felipe Calvo Salcedo, Carlos Alberto Henao Baena","doi":"10.18359/RCIN.3212","DOIUrl":null,"url":null,"abstract":"En este documento se presenta un caso de estudio para evaluar la eficiencia que presentan los descriptores espacio frecuencia en la clasificación de patrones textiles. La metodología de trabajo consta de tres etapas fundamentales, la caracterización, la clasificación y la validación. En la etapa de caracterización se utilizan descriptores como la transformada Wavelet, la transformada de Fourier y la adaptación de la Transformada corta de Fourier en espacio para la generación de un vector de características, a este vector se le computa los momentos estadísticos como Kurtosis, sesgo, media y desviación estándar. Para la etapa de clasificación se analiza el uso de tres métodos del estado del arte como lo son las Máquinas de Soporte Vectorial (SVM), las Redes Neuronales Artificiales (RNA) y el Proceso Gaussiano (GP). Para validar el método se construye una base de datos anotada con diez tipos de telas con un total de 1000 fotos, a las cuales se le aplica el proceso caracterización y clasificación por medio de un experimento Montecarlo. En esta etapa se generan configuraciones aleatorias de entrenamiento (70%) y prueba (30%) obteniendo el desempeño de cada modelo de clasificación. Por último se obtiene la matriz de confusión y se determinan los porcentajes de acierto de cada experimento.","PeriodicalId":31201,"journal":{"name":"Ciencia e Ingenieria Neogranadina","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia e Ingenieria Neogranadina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18359/RCIN.3212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

En este documento se presenta un caso de estudio para evaluar la eficiencia que presentan los descriptores espacio frecuencia en la clasificación de patrones textiles. La metodología de trabajo consta de tres etapas fundamentales, la caracterización, la clasificación y la validación. En la etapa de caracterización se utilizan descriptores como la transformada Wavelet, la transformada de Fourier y la adaptación de la Transformada corta de Fourier en espacio para la generación de un vector de características, a este vector se le computa los momentos estadísticos como Kurtosis, sesgo, media y desviación estándar. Para la etapa de clasificación se analiza el uso de tres métodos del estado del arte como lo son las Máquinas de Soporte Vectorial (SVM), las Redes Neuronales Artificiales (RNA) y el Proceso Gaussiano (GP). Para validar el método se construye una base de datos anotada con diez tipos de telas con un total de 1000 fotos, a las cuales se le aplica el proceso caracterización y clasificación por medio de un experimento Montecarlo. En esta etapa se generan configuraciones aleatorias de entrenamiento (70%) y prueba (30%) obteniendo el desempeño de cada modelo de clasificación. Por último se obtiene la matriz de confusión y se determinan los porcentajes de acierto de cada experimento.
使用监督学习自动识别纺织品纹理图案的空频描述符
本文介绍了一个案例研究,以评估空间频率描述符在纺织品图案分类中的效率。工作方法包括表征、分类和验证三个基本阶段。在表征阶段,使用小波变换、傅立叶变换和在空间中自适应短时傅立叶变换等描述符来生成特征向量,该向量计算峰度、偏差、平均值和标准差等统计矩。对于分类阶段,分析了三种最新方法的使用,如支持向量机(SVM)、人工神经网络(RNA)和高斯过程(GP)。为了验证该方法,建立了一个带有10种织物的注释数据库,共有1000张照片,并通过蒙特卡洛实验对其进行了表征和分类。在这一阶段,通过获得每个分类模型的性能,生成随机训练(70%)和测试(30%)配置。最后得到了混淆矩阵,并确定了每个实验的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信